




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖1、2、3分別表示甲、乙、丙三人由A地到B地的路線圖,已知甲的路線為:A→C→B;乙的路線為:A→D→E→F→B,其中E為AB的中點;丙的路線為:A→I→J→K→B,其中J在AB上,且AJ>JB.若符號[→]表示[直線前進],則根據圖1、圖2、圖3的數據,判斷三人行進路線長度的大小關系為()A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲2.今年3月5日,十三屆全國人大一次會議在人民大會堂開幕,會議聽取了國務院總理李克強關于政府工作的報告,其中表示,五年來,人民生活持續改善,脫貧攻堅取得決定性進展,貧困人口減少6800多萬,易地扶貧搬遷830萬人,貧困發生率由10.2%下降到3.1%,將830萬用科學記數法表示為()A.83×105 B.0.83×106 C.8.3×106 D.8.3×1073.鐘鼎文是我國古代的一種文字,是鑄刻在殷周青銅器上的銘文,下列鐘鼎文中,不是軸對稱圖形的是()A. B. C. D.4.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=40°,則∠2的度數為()A.50° B.40° C.30° D.25°5.如圖,兩個等直徑圓柱構成如圖所示的T形管道,則其俯視圖正確的是()A.B.C.D.6.用半徑為8的半圓圍成一個圓錐的側面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.87.2cos30°的值等于()A.1 B. C. D.28.如圖所示,把直角三角形紙片沿過頂點B的直線(BE交CA于E)折疊,直角頂點C落在斜邊AB上,如果折疊后得等腰△EBA,那么結論中:①∠A=30°;②點C與AB的中點重合;③點E到AB的距離等于CE的長,正確的個數是()A.0 B.1 C.2 D.39.在平面直角坐標系xOy中,二次函數y=ax2+bx+c(a≠0)的大致圖象如圖所示,則下列結論正確的是()A.a<0,b<0,c>0B.﹣=1C.a+b+c<0D.關于x的方程ax2+bx+c=﹣1有兩個不相等的實數根10.已知x1,x2是關于x的方程x2+bx﹣3=0的兩根,且滿足x1+x2﹣3x1x2=5,那么b的值為()A.4B.﹣4C.3D.﹣311.如圖,若數軸上的點A,B分別與實數﹣1,1對應,用圓規在數軸上畫點C,則與點C對應的實數是()A.2 B.3 C.4 D.512.施工隊要鋪設1000米的管道,因在中考期間需停工2天,每天要比原計劃多施工30米才能按時完成任務.設原計劃每天施工x米,所列方程正確的是()A.=2 B.=2C.=2 D.=2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,直線x=2與反比例函數和的圖象分別交于A、B兩點,若點P是y軸上任意一點,則△PAB的面積是_____.14.已知某二次函數圖像的最高點是坐標原點,請寫出一個符合要求的函數解析式:_______.15.如圖,直角△ABC中,AC=3,BC=4,AB=5,則內部五個小直角三角形的周長為_____.16.如圖,在四邊形ABCD中,AD∥BC,AB=CD且AB與CD不平行,AD=2,∠BCD=60°,對角線CA平分∠BCD,E,F分別是底邊AD,BC的中點,連接EF,點P是EF上的任意一點,連接PA,PB,則PA+PB的最小值為__.17.有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數,從中任意抽出一張卡片,卡片上的數是3的倍數的概率是18.科技改變生活,手機導航極大方便了人們的出行.如圖,小明一家自駕到古鎮C游玩,到達A地后,導航顯示車輛應沿北偏西60°方向行駛6千米至B地,再沿北偏東45°方向行駛一段距離到達古鎮C.小明發現古鎮C恰好在A地的正北方向,則B、C兩地的距離是_____千米.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖1,□OABC的邊OC在y軸的正半軸上,OC=3,A(2,1),反比例函數y=(x>0)的圖象經過點B.(1)求點B的坐標和反比例函數的關系式;(2)如圖2,將線段OA延長交y=(x>0)的圖象于點D,過B,D的直線分別交x軸、y軸于E,F兩點,①求直線BD的解析式;②求線段ED的長度.20.(6分)一輛汽車,新車購買價30萬元,第一年使用后折舊,以后該車的年折舊率有所變化,但它在第二、三年的年折舊率相同.已知在第三年年末,這輛車折舊后價值為萬元,求這輛車第二、三年的年折舊率.21.(6分)計算:22.(8分)如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓恰好與BC相切于點D,分別交AC,AB于點E,F.(1)若∠B=30°,求證:以A,O,D,E為頂點的四邊形是菱形;(2)填空:若AC=6,AB=10,連接AD,則⊙O的半徑為,AD的長為.23.(8分)某工廠計劃在規定時間內生產24000個零件,若每天比原計劃多生產30個零件,則在規定時間內可以多生產300個零件.求原計劃每天生產的零件個數和規定的天數.為了提前完成生產任務,工廠在安排原有工人按原計劃正常生產的同時,引進5組機器人生產流水線共同參與零件生產,已知每組機器人生產流水線每天生產零件的個數比20個工人原計劃每天生產的零件總數還多20%,按此測算,恰好提前兩天完成24000個零件的生產任務,求原計劃安排的工人人數.24.(10分)班級的課外活動,學生們都很積極.梁老師在某班對同學們進行了一次關于“我喜愛的體育項目”的調査,下面是他通過收集數據后,繪制的兩幅不完整的統計圖.請根據圖中的信息,解答下列問題:(1)調查了________名學生;(2)補全條形統計圖;(3)在扇形統計圖中,“乒乓球”部分所對應的圓心角度數為________;(4)學校將舉辦運動會,該班將推選5位同學參加乒乓球比賽,有3位男同學和2位女同學,現準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.25.(10分)為弘揚中華傳統文化,黔南州近期舉辦了中小學生“國學經典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經.比賽形式分“單人組”和“雙人組”.(1)小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經”的概率是多少?(2)小紅和小明組成一個小組參加“雙人組”比賽,比賽規則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進行說明.26.(12分)如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)線段AC,AG,AH什么關系?請說明理由;(3)設AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數關系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.27.(12分)在“傳箴言”活動中,某班團支部對該班全體團員在一個月內所發箴言條數的情況進行了統計,并制成了如圖所示的兩幅不完整的統計圖:求該班團員在這一個月內所發箴言的平均條數是多少?并將該條形統計圖補充完整;如果發了3條箴言的同學中有兩位男同學,發了4條箴言的同學中有三位女同學.現要從發了3條箴言和4條箴言的同學中分別選出一位參加該校團委組織的“箴言”活動總結會,請你用列表法或樹狀圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】分析:由角的度數可以知道2、3中的兩個三角形的對應邊都是平行的,所以圖2,圖3中的三角形都和圖1中的三角形相似.而且圖2三角形全等,圖3三角形相似.詳解:根據以上分析:所以圖2可得AE=BE,AD=EF,DE=BE.∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.圖3與圖1中,三個三角形相似,所以====.∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,∴甲=丙.∴甲=乙=丙.故選A.點睛:本題考查了的知識點是平行四邊形的性質,解答本題的關鍵是利用相似三角形的平移,求得線段的關系.2、C【解析】
科學記數法,是指把一個大于10(或者小于1)的整數記為a×10n的形式(其中1≤|a|<10|)的記數法.【詳解】830萬=8300000=8.3×106.故選C【點睛】本題考核知識點:科學記數法.解題關鍵點:理解科學記數法的意義.3、A【解析】根據軸對稱圖形的概念求解.解:根據軸對稱圖形的概念可知:B,C,D是軸對稱圖形,A不是軸對稱圖形,故選A.“點睛”本題考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.4、A【解析】
由兩直線平行,同位角相等,可求得∠3的度數,然后求得∠2的度數.【詳解】如圖,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故選A.【點睛】此題考查了平行線的性質.利用兩直線平行,同位角相等是解此題的關鍵.5、B【解析】試題分析:三視圖就是主視圖(正視圖)、俯視圖、左視圖的總稱.從物體的前面向后面投射所得的視圖稱主視圖(正視圖)——能反映物體的前面形狀;從物體的上面向下面投射所得的視圖稱俯視圖——能反映物體的上面形狀;從物體的左面向右面投射所得的視圖稱左視圖——能反映物體的左面形狀.故選B考點:三視圖6、A【解析】
由于半圓的弧長=圓錐的底面周長,那么圓錐的底面周長為8π,底面半徑=8π÷2π.【詳解】解:由題意知:底面周長=8π,∴底面半徑=8π÷2π=1.故選A.【點睛】此題主要考查了圓錐側面展開扇形與底面圓之間的關系,圓錐的側面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長,解決本題的關鍵是應用半圓的弧長=圓錐的底面周長.7、C【解析】分析:根據30°角的三角函數值代入計算即可.詳解:2cos30°=2×=.故選C.點睛:此題主要考查了特殊角的三角函數值的應用,熟記30°、45°、60°角的三角函數值是解題關鍵.8、D【解析】
根據翻折變換的性質分別得出對應角相等以及利用等腰三角形的性質判斷得出即可.【詳解】∵把直角三角形紙片沿過頂點B的直線(BE交CA于E)折疊,直角頂點C落在斜邊AB上,折疊后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①選項正確;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②選項正確;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分線上的點到角的兩邊距離相等),∴點E到AB的距離等于CE的長,故③選項正確,故正確的有3個.故選D.【點睛】此題主要考查了翻折變換的性質以及角平分線的性質和等腰三角形的性質等知識,利用折疊前后對應角相等是解題關鍵.9、D【解析】試題分析:根據圖像可得:a<0,b>0,c<0,則A錯誤;,則B錯誤;當x=1時,y=0,即a+b+c=0,則C錯誤;當y=-1時有兩個交點,即有兩個不相等的實數根,則正確,故選D.10、A【解析】
根據一元二次方程根與系數的關系和整體代入思想即可得解.【詳解】∵x1,x2是關于x的方程x2+bx﹣3=0的兩根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故選A.【點睛】本題主要考查一元二次方程的根與系數的關系(韋達定理),韋達定理:若一元二次方程ax2+bx+c=0(a≠0)有兩個實數根x1,x2,那么x1+x2=-ba,x1x2=11、B【解析】
由數軸上的點A、B分別與實數﹣1,1對應,即可求得AB=2,再根據半徑相等得到BC=2,由此即求得點C對應的實數.【詳解】∵數軸上的點A,B分別與實數﹣1,1對應,∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴與點C對應的實數是:1+2=3.故選B.【點睛】本題考查了實數與數軸,熟記實數與數軸上的點是一一對應的關系是解決本題的關鍵.12、A【解析】分析:設原計劃每天施工x米,則實際每天施工(x+30)米,根據:原計劃所用時間﹣實際所用時間=2,列出方程即可.詳解:設原計劃每天施工x米,則實際每天施工(x+30)米,根據題意,可列方程:=2,故選A.點睛:本題考查了由實際問題抽象出分式方程,關鍵是讀懂題意,找出合適的等量關系,列出方程.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】
解:∵把x=1分別代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P為y軸上的任意一點,∴點P到直線BC的距離為1.∴△PAB的面積.故答案為:.14、等【解析】
根據二次函數的圖象最高點是坐標原點,可以得到a<0,b=0,c=0,所以解析式滿足a<0,b=0,c=0即可.【詳解】解:根據二次函數的圖象最高點是坐標原點,可以得到a<0,b=0,c=0,例如:.【點睛】此題是開放性試題,考查函數圖象及性質的綜合運用,對考查學生所學函數的深入理解、掌握程度具有積極的意義.15、1【解析】分析:由圖形可知,內部小三角形直角邊是大三角形直角邊平移得到的,故內部五個小直角三角形的周長為大直角三角形的周長.詳解:由圖形可以看出:內部小三角形直角邊是大三角形直角邊平移得到的,故內部五個小直角三角形的周長為AC+BC+AB=1.故答案為1.點睛:本題主要考查了平移的性質,需要注意的是:平移前后圖形的大小、形狀都不改變.16、2【解析】
將PA+PB轉化為PA+PC的值即可求出最小值.【詳解】解:E,F分別是底邊AD,BC的中點,四邊形ABCD是等腰梯形,B點關于EF的對稱點C點,AC即為PA+PB的最小值,∠BCD=,對角線AC平分∠BCD,∠ABC=,ZBCA=,∠BAC=,AD=2,PA+PB的最小值=.故答案為:.【點睛】求PA+PB的最小值,PA+PB不能直接求,可考慮轉化PA+PC的值,從而找出其最小值求解.17、.【解析】
分別求出從1到6的數中3的倍數的個數,再根據概率公式解答即可.【詳解】有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數,從中任意抽出一張卡片,共有6種結果,其中卡片上的數是3的倍數的有3和6兩種情況,所以從中任意抽出一張卡片,卡片上的數是3的倍數的概率是.故答案為【點睛】考查了概率公式,用到的知識點為:概率=所求情況數與總情況數之比.18、3【解析】
作BE⊥AC于E,根據正弦的定義求出BE,再根據正弦的定義計算即可.【詳解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=,∴BE=AB?sin∠BAC=,由題意得,∠C=45°,∴BC==(千米),故答案為3.【點睛】本題考查的是解直角三角形的應用-方向角問題,掌握方向角的概念、熟記銳角三角函數的定義是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)B(2,4),反比例函數的關系式為y=;(2)①直線BD的解析式為y=-x+6;②ED=2【解析】試題分析:(1)過點A作AP⊥x軸于點P,由平行四邊形的性質可得BP=4,可得B(2,4),把點B坐標代入反比例函數解析式中即可;(2)①先求出直線OA的解析式,和反比例函數解析式聯立,解方程組得到點D的坐標,再由待定系數法求得直線BD的解析式;②先求得點E的坐標,過點D分別作x軸的垂線,垂足為G(4,0),由溝谷定理即可求得ED長度.試題解析:(1)過點A作AP⊥x軸于點P,則AP=1,OP=2,又∵AB=OC=3,∴B(2,4).,∵反比例函數y=(x>0)的圖象經過的B,∴4=,∴k=8.∴反比例函數的關系式為y=;(2)①由點A(2,1)可得直線OA的解析式為y=x.解方程組,得,.∵點D在第一象限,∴D(4,2).由B(2,4),點D(4,2)可得直線BD的解析式為y=-x+6;②把y=0代入y=-x+6,解得x=6,∴E(6,0),過點D分別作x軸的垂線,垂足分別為G,則G(4,0),由勾股定理可得:ED=.點睛:本題考查一次函數、反比例函數、平行四邊形等幾何知識,綜合性較強,要求學生有較強的分析問題和解決問題的能力.20、這輛車第二、三年的年折舊率為.【解析】
設這輛車第二、三年的年折舊率為x,則第二年這就后的價格為30(1-20%)(1-x)元,第三年折舊后的而價格為30(1-20%)(1-x)2元,與第三年折舊后的價格為17.34萬元建立方程求出其解即可.【詳解】設這輛車第二、三年的年折舊率為,依題意,得整理得,解得,.因為折舊率不可能大于1,所以不合題意,舍去.所以答:這輛車第二、三年的年折舊率為.【點睛】本題是一道折舊率問題,考查了列一元二次方程解實際問題的運用,解答本題時設出折舊率,表示出第三年的折舊后價格并運用價格為11.56萬元建立方程是關鍵.21、5【解析】
本題涉及零指數冪、負整數指數冪、絕對值、乘方四個考點.在計算時,需要針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果.【詳解】原式=4-8×0.125+1+1=4-1+2=5【點睛】本題考查實數的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵是熟練掌握負整數指數冪、零指數冪、乘方、絕對值等考點的運算.22、(1)見解析;(2)【解析】
(1)先通過證明△AOE為等邊三角形,得出AE=OD,再根據“同位角相等,兩直線平行”證明AE//OD,從而證得四邊形AODE是平行四邊形,再根據“一組鄰邊相等的平行四邊形為菱形”即可得證.(2)利用在Rt△OBD中,sin∠B==可得出半徑長度,在Rt△ODB中BD=,可求得BD的長,由CD=CB﹣BD可得CD的長,在RT△ACD中,AD=,即可求出AD長度.【詳解】解:(1)證明:連接OE、ED、OD,在Rt△ABC中,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AEO是等邊三角形,∴AE=OE=AO∵OD=OA,∴AE=OD∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,又∵∠C=90°∴AC∥OD,又∵AE=OD∴四邊形AODE是平行四邊形,∵OD=OA∴四邊形AODE是菱形.(2)在Rt△ABC中,∵AC=6,AB=10,∴sin∠B==,BC=8∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,在Rt△OBD中,sin∠B==,∴OB=OD∵AO+OB=AB=10,∴OD+OD=10∴OD=∴OB=OD=∴BD==5∴CD=CB﹣BD=3∴AD===3.【點睛】本題主要考查圓中的計算問題、菱形以及相似三角形的判定與性質23、(1)2400個,10天;(2)1人.【解析】
(1)設原計劃每天生產零件x個,根據相等關系“原計劃生產24000個零件所用時間=實際生產(24000+300)個零件所用的時間”可列方程,解出x即為原計劃每天生產的零件個數,再代入即可求得規定天數;(2)設原計劃安排的工人人數為y人,根據“(5組機器人生產流水線每天生產的零件個數+原計劃每天生產的零件個數)×(規定天數-2)=零件總數24000個”可列方程[5×20×(1+20%)×+2400]×(10-2)=24000,解得y的值即為原計劃安排的工人人數.【詳解】解:(1)解:設原計劃每天生產零件x個,由題意得,,解得x=2400,經檢驗,x=2400是原方程的根,且符合題意.∴規定的天數為24000÷2400=10(天).答:原計劃每天生產零件2400個,規定的天數是10天.(2)設原計劃安排的工人人數為y人,由題意得,[5×20×(1+20%)×+2400]×(10-2)=24000,解得,y=1.經檢驗,y=1是原方程的根,且符合題意.答:原計劃安排的工人人數為1人.【點睛】本題考查分式方程的應用,找準等量關系是本題的解題關鍵,注意分式方程結果要檢驗.24、50見解析(3)115.2°(4)【解析】試題分析:(1)用最喜歡籃球的人數除以它所占的百分比可得總共的學生數;(2)用學生的總人數乘以各部分所占的百分比,可得最喜歡足球的人數和其他的人數,即可把條形統計圖補充完整;(3)根據圓心角的度數=360o×它所占的百分比計算;(4)列出樹狀圖可知,共有20種等可能的結果,兩名同學恰為一男一女的有12種情況,從而可求出答案.解:(1)由題意可知該班的總人數=15÷30%=50(名)故答案為50;(2)足球項目所占的人數=50×18%=9(名),所以其它項目所占人數=50﹣15﹣9﹣16=10(名)補全條形統計圖如圖所示:(3)“乒乓球”部分所對應的圓心角度數=360°×=115.2°,故答案為115.2°;(4)畫樹狀圖如圖.由圖可知,共有20種等可能的結果,兩名同學恰為一男一女的有12種情況,所以P(恰好選出一男一女)==.點睛:本題考查的是條形統計圖和扇形統計圖的綜合運用,概率的計算.讀懂統計圖,從不同的統計圖中得到必要的信息及掌握概率的計算方法是解決問題的關鍵.25、(1);(2).【解析】
(1)直接利用概率公式求解;(2)先畫樹狀圖展示所有12種等可能的結果數,再找出恰好小紅抽中“唐詩”且小明抽中“宋詞”的結果數,然后根據概率公式求解.【詳解】(1)她從中隨機抽取一個比賽項目,恰好抽中“三字經”的概率=;(2)畫樹狀圖為:共有12種等可能的結果數,其中恰好小紅抽中“唐詩”且小明抽中“宋詞”的結果數為1,所以恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率=.26、(1)=;(2)結論:AC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年安徽審計職業學院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 職工小家培訓課件
- 2025年安徽體育運動職業技術學院高職單招職業技能測試近5年常考版參考題庫含答案解析
- alcon培訓課件教學課件
- 世界讀書日活動策劃方案
- 腫瘤病病人的護理查房
- 肺心病護理疑難病例討論
- 6S基礎知識課件
- 2025年云南省楚雄市高三下學期期末“3+1”質量調研生物試題含解析
- 萊蕪職業技術學院《基本樂理與應用》2023-2024學年第二學期期末試卷
- 2024年全國統一高考數學試卷(新高考Ⅱ)含答案
- 2024年義務教育階段國家質量監測模擬測試
- 高一數學下學期考點精講+精練(人教A版2019必修第二冊)第六章平面向量及其應用章末檢測卷(一)(原卷版+解析)
- 道法國測題附有答案
- 異地就醫備案的個人承諾書
- 航空航天概論智慧樹知到期末考試答案章節答案2024年西安航空學院
- 人教版七年級下冊生物重點知識提綱(填空版)
- 2024年河南水利與環境職業學院單招職業適應性測試題庫審定版
- 國家八年級數學質量測試題(六套)
- MOOC 宋詞經典-浙江大學 中國大學慕課答案
- MOOC 工程材料學-華中科技大學 中國大學慕課答案
評論
0/150
提交評論