




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.下列計算結果是x5的為()A.x10÷x2B.x6﹣xC.x2?x3D.(x3)22.如圖,等邊△ABC的邊長為1cm,D、E分別AB、AC是上的點,將△ADE沿直線DE折疊,點A落在點A′處,且點A′在△ABC外部,則陰影部分的周長為()cmA.1 B.2 C.3 D.43.計算(﹣ab2)3的結果是()A.﹣3ab2 B.a3b6 C.﹣a3b5 D.﹣a3b64.如圖,雙曲線y=(k>0)經過矩形OABC的邊BC的中點E,交AB于點D,若四邊形ODBC的面積為3,則k的值為()A.1 B.2 C.3 D.65.計算的值為()A. B.-4 C. D.-26.如果一元二次方程2x2+3x+m=0有兩個相等的實數根,那么實數m的取值為()A.m> B.m C.m= D.m=7.某幾何體的左視圖如圖所示,則該幾何體不可能是()A. B. C. D.8.為了盡早適應中考體育項目,小麗同學加強跳繩訓練,并把某周的練習情況做了如下記錄:周一個,周二個,周三個,周四個,周五個則小麗這周跳繩個數的中位數和眾數分別是A.180個,160個 B.170個,160個C.170個,180個 D.160個,200個9.如圖,將△ABC繞點C旋轉60°得到△A′B′C′,已知AC=6,BC=4,則線段AB掃過的圖形面積為()A. B. C.6π D.以上答案都不對10.如圖,一段拋物線:y=﹣x(x﹣5)(0≤x≤5),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉180°得C2,交x軸于點A2;將C2繞點A2旋轉180°得C3,交x軸于點A3;…如此進行下去,得到一“波浪線”,若點P(2018,m)在此“波浪線”上,則m的值為(
)A.4 B.﹣4 C.﹣6 D.6二、填空題(本大題共6個小題,每小題3分,共18分)11.用配方法將方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n為常數),則m+n=_____.12.分式方程的解是_____.13.若分式方程有增根,則m的值為______.14.二次根式在實數范圍內有意義,x的取值范圍是_____.15.若點(,1)與(﹣2,b)關于原點對稱,則=_______.16.9的算術平方根是.三、解答題(共8題,共72分)17.(8分)已知:如圖,AB為⊙O的直徑,C是BA延長線上一點,CP切⊙O于P,弦PD⊥AB于E,過點B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點,∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數;(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點M,求QM的長.18.(8分)反比例函數y=(k≠0)與一次函數y=mx+b(m≠0)交于點A(1,2k﹣1).求反比例函數的解析式;若一次函數與x軸交于點B,且△AOB的面積為3,求一次函數的解析式.19.(8分)甲、乙兩個人做游戲:在一個不透明的口袋中裝有1張相同的紙牌,它們分別標有數字1,2,3,1.從中隨機摸出一張紙牌然后放回,再隨機摸出一張紙牌,若兩次摸出的紙牌上數字之和是3的倍數,則甲勝;否則乙勝.這個游戲對雙方公平嗎?請列表格或畫樹狀圖說明理由.20.(8分)一道選擇題有四個選項.(1)若正確答案是,從中任意選出一項,求選中的恰好是正確答案的概率;(2)若正確答案是,從中任意選擇兩項,求選中的恰好是正確答案的概率.21.(8分)如圖1,將長為10的線段OA繞點O旋轉90°得到OB,點A的運動軌跡為,P是半徑OB上一動點,Q是上的一動點,連接PQ.(1)當∠POQ=時,PQ有最大值,最大值為;(2)如圖2,若P是OB中點,且QP⊥OB于點P,求的長;(3)如圖3,將扇形AOB沿折痕AP折疊,使點B的對應點B′恰好落在OA的延長線上,求陰影部分面積.22.(10分)如圖,在△ABC中,∠ACB=90°,O是AB上一點,以OA為半徑的⊙O與BC相切于點D,與AB交于點E,連接ED并延長交AC的延長線于點F.(1)求證:AE=AF;(2)若DE=3,sin∠BDE=,求AC的長.23.(12分)綜合與實踐﹣猜想、證明與拓廣問題情境:數學課上同學們探究正方形邊上的動點引發的有關問題,如圖1,正方形ABCD中,點E是BC邊上的一點,點D關于直線AE的對稱點為點F,直線DF交AB于點H,直線FB與直線AE交于點G,連接DG,CG.猜想證明(1)當圖1中的點E與點B重合時得到圖2,此時點G也與點B重合,點H與點A重合.同學們發現線段GF與GD有確定的數量關系和位置關系,其結論為:;(2)希望小組的同學發現,圖1中的點E在邊BC上運動時,(1)中結論始終成立,為證明這兩個結論,同學們展開了討論:小敏:根據軸對稱的性質,很容易得到“GF與GD的數量關系”…小麗:連接AF,圖中出現新的等腰三角形,如△AFB,…小凱:不妨設圖中不斷變化的角∠BAF的度數為n,并設法用n表示圖中的一些角,可證明結論.請你參考同學們的思路,完成證明;(3)創新小組的同學在圖1中,發現線段CG∥DF,請你說明理由;聯系拓廣:(4)如圖3若將題中的“正方形ABCD”變為“菱形ABCD“,∠ABC=α,其余條件不變,請探究∠DFG的度數,并直接寫出結果(用含α的式子表示).24.如圖,矩形中,點是線段上一動點,為的中點,的延長線交BC于.(1)求證:;(2)若,,從點出發,以l的速度向運動(不與重合).設點運動時間為,請用表示的長;并求為何值時,四邊形是菱形.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】解:A.x10÷x2=x8,不符合題意;B.x6﹣x不能進一步計算,不符合題意;C.x2x3=x5,符合題意;D.(x3)2=x6,不符合題意.故選C.2、C【解析】
由題意得到DA′=DA,EA′=EA,經分析判斷得到陰影部分的周長等于△ABC的周長即可解決問題.【詳解】如圖,由題意得:DA′=DA,EA′=EA,∴陰影部分的周長=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故選C.【點睛】本題考查了等邊三角形的性質以及折疊的問題,折疊問題的實質是“軸對稱”,解題關鍵是找出經軸對稱變換所得的等量關系.3、D【解析】
根據積的乘方與冪的乘方計算可得.【詳解】解:(﹣ab2)3=﹣a3b6,故選D.【點睛】本題主要考查冪的乘方與積的乘方,解題的關鍵是掌握積的乘方與冪的乘方的運算法則.4、B【解析】
先根據矩形的特點設出B、C的坐標,根據矩形的面積求出B點橫縱坐標的積,由D為AB的中點求出D點的橫縱坐標,再由待定系數法即可求出反比例函數的解析式.【詳解】解:如圖:連接OE,設此反比例函數的解析式為y=(k>0),C(c,0),則B(c,b),E(c,),設D(x,y),∵D和E都在反比例函數圖象上,∴xy=k,即,∵四邊形ODBC的面積為3,∴∴∴bc=4∴∵k>0∴解得k=2,故答案為:B.【點睛】本題考查了反比例函數中比例系數k的幾何意義,涉及到矩形的性質及用待定系數法求反比例函數的解析式,難度適中.5、C【解析】
根據二次根式的運算法則即可求出答案.【詳解】原式=-3=-2,故選C.【點睛】本題考查二次根式的運算,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.6、C【解析】試題解析:∵一元二次方程2x2+3x+m=0有兩個相等的實數根,∴△=32-4×2m=9-8m=0,解得:m=.故選C.7、D【解析】
解:幾何體的左視圖是從左面看幾何體所得到的圖形,選項A、B、C的左視圖均為從左往右正方形個數為2,1,符合題意,選項D的左視圖從左往右正方形個數為2,1,1,故選D.【點睛】本題考查幾何體的三視圖.8、B【解析】
根據中位數和眾數的定義分別進行解答即可.【詳解】解:把這些數從小到大排列為160,160,170,180,200,最中間的數是170,則中位數是170;160出現了2次,出現的次數最多,則眾數是160;故選B.【點睛】此題考查了中位數和眾數,掌握中位數和眾數的定義是解題的關鍵;中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數;眾數是一組數據中出現次數最多的數.9、D【解析】
從圖中可以看出,線段AB掃過的圖形面積為一個環形,環形中的大圓半徑是AC,小圓半徑是BC,圓心角是60度,所以陰影面積=大扇形面積-小扇形面積.【詳解】陰影面積=π.
故選D.【點睛】本題的關鍵是理解出,線段AB掃過的圖形面積為一個環形.10、C【解析】分析:根據圖象的旋轉變化規律以及二次函數的平移規律得出平移后解析式,進而求出m的值,由2017÷5=403…2,可知點P(2018,m)在此“波浪線”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.詳解:當y=0時,﹣x(x﹣5)=0,解得x1=0,x2=5,則A1(5,0),∴OA1=5,∵將C1繞點A1旋轉180°得C2,交x軸于點A2;將C2繞點A2旋轉180°得C3,交x軸于點A3;…;如此進行下去,得到一“波浪線”,∴A1A2=A2A3=…=OA1=5,∴拋物線C404的解析式為y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),當x=2018時,y=(2018﹣2015)(2018﹣2020)=﹣1,即m=﹣1.故選C.點睛:此題主要考查了二次函數的平移規律,根據已知得出二次函數旋轉后解析式是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
方程常數項移到右邊,兩邊加上25配方得到結果,求出m與n的值即可.【詳解】解:∵x2+10x-11=0,∴x2+10x=11,則x2+10x+25=11+25,即(x+5)2=36,∴m=5、n=36,∴m+n=1,故答案為1.【點睛】此題考查了解一元二次方程-配方法,熟練掌握完全平方公式是解本題的關鍵.12、x=13【解析】
解分式方程的步驟:①去分母;②求出整式方程的解;③檢驗;④得出結論.【詳解】,去分母,可得x﹣5=8,解得x=13,經檢驗:x=13是原方程的解.【點睛】本題主要考查了解分式方程,解分式方程時,去分母后所得整式方程的解有可能使原方程中的分母為0,所以應檢驗.13、-1【解析】
增根是分式方程化為整式方程后產生的使分式方程的分母為0的根.把增根代入化為整式方程的方程即可求出m的值.【詳解】方程兩邊都乘(x-1),得x-1(x-1)=-m∵原方程增根為x=1,∴把x=1代入整式方程,得m=-1,故答案為:-1.【點睛】本題考查了分式方程的增根,增根確定后可按如下步驟進行:化分式方程為整式方程;把增根代入整式方程即可求得相關字母的值.14、x≤1【解析】
根據二次根式有意義的條件列出不等式,解不等式即可.【詳解】解:由題意得,1﹣x≥0,解得,x≤1,故答案為x≤1.【點睛】本題考查的是二次根式有意義的條件,掌握二次根式中的被開方數必須是非負數是解題的關鍵.15、.【解析】
∵點(a,1)與(﹣2,b)關于原點對稱,∴b=﹣1,a=2,∴==.故答案為.考點:關于原點對稱的點的坐標.16、1.【解析】
根據一個正數的算術平方根就是其正的平方根即可得出.【詳解】∵,∴9算術平方根為1.故答案為1.【點睛】本題考查了算術平方根,熟練掌握算術平方根的概念是解題的關鍵.三、解答題(共8題,共72分)17、(1)證明見解析(2)30°(3)QM=【解析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結合BQ⊥CP于點Q,PE⊥AB于點E即可由角平分線的性質得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設EF=x,則由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,從而可得AB=,則OP=OA=,結合AE=可得OE=,這樣即可得到sin∠OPE=,由此可得∠OPE=30°,則∠C=30°;(3)如下圖3,連接BG,過點O作OK⊥HB于點K,結合BQ⊥CP,∠OPQ=90°,可得四邊形POKQ為矩形.由此可得QK=PO,OK∥CQ從而可得∠KOB=∠C=30°;由已知易證PE=,在Rt△EPO中結合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知條件可得BG=6,∠ABG=60°;過點G作GN⊥QB交QB的延長線于點N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,從而可得解得GN=,BN=3,由此可得QN=12,則在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分線,由此可得QM:GM=QB:GB=9:6由此即可求得QM的長了.試題解析:(1)如下圖1,連接OP,PB,∵CP切⊙O于P,∴OP⊥CP于點P,又∵BQ⊥CP于點Q,∴OP∥BQ,∴∠OPB=∠QBP,∵OP=OB,∴∠OPB=∠OBP,∴∠QBP=∠OBP,又∵PE⊥AB于點E,∴PQ=PE;(2)如下圖2,連接,∵CP切⊙O于P,∴∴∵PD⊥AB∴∴∴在Rt中,∠GAB=30°∴設EF=x,則在Rt中,tan∠BFE=3∴∴∴∴∴在RtPEO中,∴30°;(3)如下圖3,連接BG,過點O作于K,又BQ⊥CP,∴,∴四邊形POKQ為矩形,∴QK=PO,OK//CQ,∴30°,∵⊙O中PD⊥AB于E,PD=6,AB為⊙O的直徑,∴PE=PD=3,根據(2)得,在RtEPO中,,∴,∴OB=QK=PO=6,∴在Rt中,,∴,∴QB=9,在△ABG中,AB為⊙O的直徑,∴AGB=90°,∵BAG=30°,∴BG=6,ABG=60°,過點G作GN⊥QB交QB的延長線于點N,則∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,∴QN=QB+BN=12,∴在Rt△QGN中,QG=,∵∠ABG=∠CBQ=60°,∴BM是△BQG的角平分線,∴QM:GM=QB:GB=9:6,∴QM=.點睛:解本題第3小題的要點是:(1)作出如圖所示的輔助線,結合已知條件和(2)先求得BQ、BG的長及∠CBQ=∠ABG=60°;(2)再過點G作GN⊥QB并交QB的延長線于點N,解出BN和GN的長,這樣即可在Rt△QGN中求得QG的長,最后在△BQG中“由角平分線分線段成比例定理”即可列出比例式求得QM的長了.18、(1)y=;(2)y=﹣或y=【解析】試題分析:(1)把A(1,2k-1)代入y=即可求得結果;
(2)根據三角形的面積等于3,求得點B的坐標,代入一次函數y=mx+b即可得到結果.試題解析:(1)把A(1,2k﹣1)代入y=得,2k﹣1=k,∴k=1,∴反比例函數的解析式為:y=;(2)由(1)得k=1,∴A(1,1),設B(a,0),∴S△AOB=?|a|×1=3,∴a=±6,∴B(﹣6,0)或(6,0),把A(1,1),B(﹣6,0)代入y=mx+b得:,∴,∴一次函數的解析式為:y=x+,把A(1,1),B(6,0)代入y=mx+b得:,∴,∴一次函數的解析式為:y=﹣.所以符合條件的一次函數解析式為:y=﹣或y=x+.19、不公平【解析】【分析】列表得到所有情況,然后找出數字之和是3的倍數的情況,利用概率公式計算后進行判斷即可得.【詳解】根據題意列表如下:12311(1,1)(2,1)(3,1)(1,1)2(1,2)(2,2)(3,2)(1,2)3(1,3)(2,3)(3,3)(1,3)1(1,1)(2,1)(3,1)(1,1)所有等可能的情況數有16種,其中兩次摸出的紙牌上數字之和是3的倍數的情況有:(2,1),(1,2),(1,2),(3,3),(2,1),共5種,∴P(甲獲勝)=,P(乙獲勝)=1﹣=,則該游戲不公平.【點睛】本題考查了列表法或樹狀圖法求概率,判斷游戲的公平性,用到的知識點為:概率=所求情況數與總情況數之比.20、(1);(2)【解析】
(1)直接利用概率公式求解;
(2)畫樹狀圖展示所有12種等可能的結果數,再找出選中的恰好是正確答案A,B的結果數,然后根據概率公式求解.【詳解】解:(1)選中的恰好是正確答案A的概率為;
(2)畫樹狀圖:
共有12種等可能的結果數,其中選中的恰好是正確答案A,B的結果數為2,
所以選中的恰好是正確答案A,B的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.21、(1);(2);(3)【解析】
(1)先判斷出當PQ取最大時,點Q與點A重合,點P與點B重合,即可得出結論;(2)先判斷出∠POQ=60°,最后用弧長用弧長公式即可得出結論;(3)先在Rt△B'OP中,OP2+=,解得OP=,最后用面積的和差即可得出結論.【詳解】解:(1)∵P是半徑OB上一動點,Q是上的一動點,∴當PQ取最大時,點Q與點A重合,點P與點B重合,此時,∠POQ=90°,PQ=,故答案為:90°,10;(2)解:如圖,連接OQ,∵點P是OB的中點,∴OP=OB=OQ.∵QP⊥OB,∴∠OPQ=90°在Rt△OPQ中,cos∠QOP=,∴∠QOP=60°,∴lBQ;(3)由折疊的性質可得,,在Rt△B'OP中,OP2+=,解得OP=,S陰影=S扇形AOB﹣2S△AOP=.【點睛】此題是圓的綜合題,主要考查了圓的性質,弧長公式,扇形的面積公式,熟記公式是解本題的關鍵.22、(1)證明見解析;(2)1.【解析】
(1)根據切線的性質和平行線的性質解答即可;(2)根據直角三角形的性質和三角函數解答即可.【詳解】(1)連接OD,∵OD=OE,∴∠ODE=∠OED.∵直線BC為⊙O的切線,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)連接AD,∵AE是⊙O的直徑,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,=sin∠DAF=sin∠BDE=,∴AF=3DF=9,在Rt△CDF中,=sin∠CDF=sin∠BDE=,∴CF=DF=1,∴AC=AF﹣CF=1.【點睛】本題考查了切線的性質,解直角三角形的應用,等腰三角形的判定等,綜合性較強,正確添加輔助線、熟練掌握和靈活運用相關知識是解題的關鍵.23、(1)GF=GD,GF⊥GD;(2)見解析;(3)見解析;(4)90°﹣.【解析】
(1)根據四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點D關于直線AE的對稱點為點F,即可證明出∠DBF=90°,故GF⊥GD,再根據∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,FG=DG,FG⊥DG,再分別求出∠GFD與∠DBC的角度,再根據三角函數的性質可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據菱形的性質可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【詳解】解:(1)GF=GD,GF⊥GD,理由:∵四邊形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵點D關于直線AE的對稱點為點F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴點F,A,D在同一條線上,∵∠F=∠ADB,∴GF=GD,故答案為GF=GD,GF⊥GD;(2)連接AF,∵點D關于直線AE的對稱點為點F,∴直線AE是線段DF的垂直平分線,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°,設∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如圖2,連接BD,由(2)知,FG=DG,FG⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四邊形ABCD是正方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CIQA 89-2024農村電商運營職業能力培養與評價規范
- T/CACE 0132-2024改性磷石膏混合料填筑應用技術規程
- T/CI 465-2024質量分級及“領跑者”評價要求多晶硅
- 商品砼運輸承包合同10篇
- 幼兒園園長授權責任協議書9篇
- 食堂規范化整治項目施工合同3篇
- 農村轉讓土地的合同3篇
- 2025年溫州市商品銷售合同4篇
- 履約擔保委托保證合同律師擬定版本5篇
- 綠化運營維護合同5篇
- 電磁場與電磁波電磁波的輻射
- 四羊方尊專題知識
- 【教案】 電源與電流 教學設計 -2022-2023學年高二上學期物理人教版(2019)必修第三冊
- GB/T 40805-2021鑄鋼件交貨驗收通用技術條件
- GB 18401-2003國家紡織產品基本安全技術規范
- 《科研創新實踐》課程教學大綱
- 報價單模板及范文(通用十二篇)
- 開發票申請單
- 五年級異分母分數加減法第一課時課件
- 學校食堂操作流程圖
- 籃球比賽記錄表(CBA專用)
評論
0/150
提交評論