2023年贛西科技職業學院高職單招(數學)試題庫含答案解析_第1頁
2023年贛西科技職業學院高職單招(數學)試題庫含答案解析_第2頁
2023年贛西科技職業學院高職單招(數學)試題庫含答案解析_第3頁
2023年贛西科技職業學院高職單招(數學)試題庫含答案解析_第4頁
2023年贛西科技職業學院高職單招(數學)試題庫含答案解析_第5頁
已閱讀5頁,還剩42頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區的她2023年贛西科技職業學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.若e1、e2、e3是三個不共面向量,則向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?請說明理由.答案:解:設c=1a+2b,則即∵a、b不共線,向量a、b、c共面.2.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準線,C上的點O到l的距離最近,且為0.4千米,城鎮P位于點O的北偏東30°處,|OP|=10千米,現要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮,一條垂直連接公路l,以便建立水陸交通網.

(1)建立適當的坐標系,求拋物線C的方程;

(2)為了降低修路成本,必須使修建的兩條公路總長最小,請給出修建方案(作出圖形,在圖中標出此時碼頭Q的位置),并求公路總長的最小值(精確到0.001千米)答案:(1)過點O作準線的垂線,垂足為A,以OA所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設拋物線C的焦點為F由題意得,P(5,53)…(8分)根據拋物線的定義知,公路總長=|QF|+|QP|≥|PF|≈9.806…(12分)當Q為線段PF與拋物線C的交點時,公路總長最小,最小值為9.806千米…(16分)3.已知雙曲線的兩個焦點為F1(-,0),F2(,0),P是此雙曲線上的一點,且PF1⊥PF2,|PF1|?|PF2|=2,則該雙曲線的方程是()

A.

B.

C.

D.答案:C4.若雙曲線的漸近線方程為y=±3x,它的一個焦點是(10,0),則雙曲線的方程是______.答案:因為雙曲線的漸近線方程為y=±3x,則設雙曲線的方程是x2-y29=λ,又它的一個焦點是(10,0)故λ+9λ=10∴λ=1,x2-y29=1故為:x2-y29=15.從拋物線y2=4x上一點P引拋物線準線的垂線,垂足為M,且|PM|=5,設拋物線的焦點為F,則△MPF的面積為()

A.6

B.8

C.10

D.15答案:C6.對某種電子元件進行壽命跟蹤調查,所得樣本頻率分布直方圖如圖,由圖可知:一批電子元件中,壽命在100~300小時的電子元件的數量與壽命在300~600小時的電子元件的數量的比大約是()A.12B.13C.14D.16答案:由于已知的頻率分布直方圖中組距為100,壽命在100~300小時的電子元件對應的矩形的高分別為:12000,32000則壽命在100~300小時的電子元件的頻率為:100?(12000+32000)=0.2壽命在300~600小時的電子元件對應的矩形的高分別為:1400,1250,32000則壽命在300~600小時子元件的頻率為:100?(1400+1250+32000)=0.8則壽命在100~300小時的電子元件的數量與壽命在300~600小時的電子元件的數量的比大約是0.2:0.8=14故選C7.將6位志愿者分成4組,每組至少1人,分赴世博會的四個不同場館服務,不同的分配方案有______種(用數字作答).答案:由題意,六個人分為四組,若有三個人一組,則四組人數為3,1,1,1,則不同的分法為C63=20種,若存在兩人一組,則分法為2,2,1,1,不同的分法有C26×C24A22=45分赴世博會的四個不同場館服務,不同的分配方案有(20+45)×A44=1560種故為:1560.8.如圖所示的多面體,它的正視圖為直角三角形,側視圖為矩形,俯視圖為直角梯形(尺寸如圖所示)

(1)求證:AE∥平面DCF;

(2)若M是AE的中點,AB=3,∠CEF=90°,求證:平面AEF⊥平面BMC.答案:(1)證法1:過點E作EG⊥CF交CF于G,連結DG,可得四邊形BCGE為矩形,又四邊形ABCD為矩形,所以AD=EG,從而四邊形ADGE為平行四邊形故AE∥DG

因為AE?平面DCF,DG?平面DCF,所以AE∥平面DCF

證法2:(面面平行的性質法)因為四邊形BEFC為梯形,所以BE∥CF.又因為BE?平面DCF,CF?平面DCF,所以BE∥平面DCF.因為四邊形ABCD為矩形,所以AB∥DC.同理可證AB∥平面DCF.又因為BE和AB是平面ABE內的兩相交直線,所以平面ABE∥平面DCF.又因為AE?平面ABE,所以AE∥平面DCF.(2)在Rt△EFG中,∠CEF=90°,EG=3,EF=2.∴∠GEF=30°,GF=12EF=1.在RT△CEG中,∠CEG=60°,∴CG=EGtan60°=3,BE=3.∵AB=3,M是AE中點,∴BM⊥AE,由側視圖是矩形,俯視圖是直角梯形,得BC⊥AB,BC⊥BE,∵AB∩BM=B,∴AE⊥平面BCM又∵AE?平面ACE,∴平面ACE⊥平面BCM.9.根據學過的知識,試把“推理與證明”這一章的知識結構圖畫出來.答案:根據“推理與證明”這一章的知識可得結構圖,如圖所示.10.在z軸上與點A(-4,1,7)和點B(3,5,-2)等距離的點C的坐標為

______.答案:由題意設C(0,0,z),∵C與點A(-4,1,7)和點B(3,5,-2)等距離,∴|AC|=|BC|,∴16+1+(7-z)2=9+25+(z+2)2,∴18z=28,∴z=149,∴C點的坐標是(0,0,149)故為:(0,0,149)11.“龜兔賽跑”講述了這樣的故事:領先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當它醒來時,發現烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達了終點…,用S1、S2分別表示烏龜和兔子所行的路程,t為時間,則下圖與故事情節相吻合的是()

A.

B.

C.

D.

答案:B12.有外形相同的球分裝三個盒子,每盒10個.其中,第一個盒子中7個球標有字母A、3個球標有字母B;第二個盒子中有紅球和白球各5個;第三個盒子中則有紅球8個,白球2個.試驗按如下規則進行:先在第一號盒子中任取一球,若取得標有字母A的球,則在第二號盒子中任取一個球;若第一次取得標有字母B的球,則在第三號盒子中任取一個球.如果第二次取出的是紅球,則稱試驗成功,那么試驗成功的概率為()

A.0.59

B.0.54

C.0.8

D.0.15答案:A13.5顆骰子同時擲出,共擲100次則至少一次出現全為6點的概率為(

)A.B.C.D.答案:C解析:5顆骰子同時擲出,沒有全部出現6點的概率是,共擲100次至少一次出現全為6點的概率是.14.將函數="2x"+1的圖像按向量平移得函數=的圖像則

A=(1)B=(1,1)C=()

D(1,1)答案:C解析:分析:本小題主要考查函數圖象的平移與向量的關系問題.依題由函數y=2x+1的圖象得到函數y=2x+1的圖象,需將函數y=2x+1的圖象向左平移1個單位,向下平移1個單位;故=(-1,-1).解:設=(h,k)則函數y=2x+1的圖象平移向量后所得圖象的解析式為y=2x-h+1+k∴∴∴=(-1,-1)故答案為:C.15.已知數列{an}中,a1=1,an+1=an+n,若利用如圖所示的種序框圖計算該數列的第10項,則判斷框內的條件是()

A.n≤8?

B.n≤9?

C.n≤10?

D.n≤11?

答案:B16.已知直線l的參數方程為x=-4+4ty=-1-2t(t為參數),圓C的極坐標方程為ρ=22cos(θ+π4),則圓心C到直線l的距離是______.答案:直線l的普通方程為x+2y+6=0,圓C的直角坐標方程為x2+y2-2x+2y=0.所以圓心C(1,-1)到直線l的距離d=|1-2+6|5=5.故為5.17.如圖,△ABC中,∠C=90°,∠A=30°,BC=1.在三角形內挖去半圓(圓心O在邊AC上,半圓與BC、AB相切于點C、M,與AC交于N,見圖中非陰影部分),則該半圓的半徑長為______.答案:連接OM,則OM⊥AB.設⊙O的半徑OM=OC=r.在Rt△OAM中,OA=OMsin30°=2r.在Rt△ABC中,AC=BCtan30°=3,∴3=AC=OA+OC=3r,∴r=33.故為33.18.書架上有5本數學書,4本物理書,5本化學書,從中任取一本,不同的取法有()A.14B.25C.100D.40答案:由題意,∵書架上有5本數學書,4本物理書,5本化學書,∴從中任取一本,不同的取法有5+4+5=14種故選A.19.圓心為(-2,3),且與y軸相切的圓的方程是()A.x2+y2+4x-6y+9=0B.x2+y2+4x-6y+4=0C.x2+y2-4x+6y+9=0D.x2+y2-4x+6y+4=0答案:根據圓心坐標(-2,3)到y軸的距離d=|-2|=2,則所求圓的半徑r=d=2,所以圓的方程為:(x+2)2+(y-3)2=4,化為一般式方程得:x2+y2+4x-6y+9=0.故選A20.某校選修乒乓球課程的學生中,高一年級有40名,高二年級有50名,現用分層抽樣的方法在這90名學生中抽取一個樣本,已知在高一年級的學生中抽取了8名,則在高二年級的學生中應抽取的人數為______.答案:∵高一年級有40名學生,在高一年級的學生中抽取了8名,∴每個個體被抽到的概率是

840=15∵高二年級有50名學生,∴要抽取50×15=10名學生,故為:10.21.平面內有兩定點A、B及動點P,設命題甲是:“|PA|+|PB|是定值”,命題乙是:“點P的軌跡是以A.B為焦點的橢圓”,那么()A.甲是乙成立的充分不必要條件B.甲是乙成立的必要不充分條件C.甲是乙成立的充要條件D.甲是乙成立的非充分非必要條件答案:命題甲是:“|PA|+|PB|是定值”,命題乙是:“點P的軌跡是以A.B為焦點的橢圓∵當一個動點到兩個頂點距離之和等于定值時,再加上這個和大于兩個定點之間的距離,可以得到動點的軌跡是橢圓,沒有加上的條件不一定推出,而點P的軌跡是以A.B為焦點的橢圓,一定能夠推出|PA|+|PB|是定值,∴甲是乙成立的必要不充分條件故選B.22.設a,b,λ都為正數,且a≠b,對于函數y=x2(x>0)圖象上兩點A(a,a2),B(b,b2).

(1)若AC=λCB,則點C的坐標是______;

(2)過點C作x軸的垂線,交函數y=x2(x>0)的圖象于D點,由點C在點D的上方可得不等式:______.答案:(1)設點C(x,y),因為點A(a,a2),B(b,b2),AC=λCB,則(x-a,y-a2)=λ(b-x,b2-y),所以:x=a+λb1+λ,y=a2+λb21+λ(2)因為點C在點D的上方,則y>yD,所以a2+λb21+λ>(a+λb1+λ)223.解不等式|2x-1|<|x|+1.答案:根據題意,對x分3種情況討論:①當x<0時,原不等式可化為-2x+1<-x+1,解得x>0,又x<0,則x不存在,此時,不等式的解集為?.②當0≤x<12時,原不等式可化為-2x+1<x+1,解得x>0,又0≤x<12,此時其解集為{x|0<x<12}.③當x≥12

時,原不等式可化為2x-1<x+1,解得12≤x<2,又由x≥12,此時其解集為{x|12≤x<2},?∪{x|0<x<12

}∪{x|12≤x<2

}={x|0<x<2};綜上,原不等式的解集為{x|0<x<2}.24.如圖為△ABC和一圓的重迭情形,此圓與直線BC相切于C點,且與AC交于另一點D.若∠A=70°,∠B=60°,則的度數為何()

A.50°

B.60°

C.100°

D.120°

答案:C25.已知O是△ABC所在平面內一點,D為BC邊中點,且,那么(

A.

B.

C.

D.2

答案:A26.橢圓的短軸長是2,一個焦點是(3,0),則橢圓的標準方程是______.答案:∵橢圓的一個焦點是(3,0),∴c=3,又∵短軸長是2,∴2b=2.b=1,∴a2=4∵焦點在x軸上,∴橢圓的標準方程是x24+y2=1故為x24+y2=127.曲線(θ為參數)上的點到原點的最大距離為()

A.1

B.

C.2

D.答案:C28.數據:1,1,3,3的眾數和中位數分別是()

A.1或3,2

B.3,2

C.1或3,1或3

D.3,3答案:A29.若施化肥量x與小麥產量y之間的回歸方程為y=250+4x(單位:kg),當施化肥量為50kg時,預計小麥產量為______kg.答案:根據回歸方程為y=250+4x,當施化肥量為50kg,即x=50kg時,y=250+4x=250+200=450kg故為:45030.在直徑為4的圓內接矩形中,最大的面積是()

A.4

B.2

C.6

D.8答案:D31.已知隨機變量X的分布列為:P(X=k)=,k=1,2,…,則P(2<X≤4)等于()

A.

B.

C.

D.答案:A32.直線l1:x+ay=2a+2與直線l2:ax+y=a+1平行,則a=______.答案:直線l1:x+ay=2a+2即x+ay-2a-2=0;直線l2:ax+y=a+1即ax+y-a-1=0,∵直線l1與直線l2互相平行∴當a≠0且a≠-1時,1a=a1≠-2a-2-a-1,解之得a=1當a=0時,兩條直線垂直;當a=-1時,兩條直線重合故為:133.給出以下四個對象,其中能構成集合的有()

①教2011屆高一的年輕教師;

②你所在班中身高超過1.70米的同學;

③2010年廣州亞運會的比賽項目;

④1,3,5.A.1個B.2個C.3個D.4個答案:解析:因為未規定年輕的標準,所以①不能構成集合;由于②③④中的對象具備確定性、互異性,所以②③④能構成集合.故選C.34.甲,乙兩個工人在同樣的條件下生產,日產量相等,每天出廢品的情況如下表所列,則有結論:()

工人

廢品數

0

1

2

3

0

1

2

3

概率

0.4

0.3

0.2

0.1

0.3

0.5

0.2

0

A.甲的產品質量比乙的產品質量好一些

B.乙的產品質量比甲的產品質量好一些

C.兩人的產品質量一樣好

D.無法判斷誰的質量好一些答案:B35.若函數y=f(x)是函數y=ax(a>0且a≠1)的反函數,且y=f(x)的圖象過點(2,1),則f(x)=______.答案:因為函數y=f(x)是函數y=ax(a>0且a≠1)的反函數,且y=f(x)的圖象過點(2,1),所以函數y=ax經過(1,2),所以a=2,所以函數y=f(x)=log2x.故為:log2x.36.如圖,已知雙曲線以長方形ABCD的頂點A,B為左、右焦點,且過C,D兩頂點.若AB=4,BC=3,則此雙曲線的標準方程為______.答案:由題意可得點OA=OB=2,AC=5設雙曲線的標準方程是x2a2-y2b2=1.則2a=AC-BC=5-3=2,所以a=1.所以b2=c2-a2=4-1=3.所以雙曲線的標準方程是x2-y23=1.故為:x2-y23=137.已知雙曲線的焦點在y軸,實軸長為8,離心率e=2,過雙曲線的弦AB被點P(4,2)平分;

(1)求雙曲線的標準方程;

(2)求弦AB所在直線方程;

(3)求直線AB與漸近線所圍成三角形的面積.答案:(1)∵雙曲線的焦點在y軸,∴設雙曲線的標準方程為y2a2-x2b2=1;∵實軸長為8,離心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵實軸長為8,離心率e=2,∴雙曲線為等軸雙曲線,a=b=4.∴雙曲線的標準方程為y216-x216=1.(2)設弦AB所在直線方程為y-2=k(x-4),A,B的坐標為A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1

y2216-x2216=1?y12-y2216-x12-x2216=0?(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直線方程為y-2=2(x-4),即2x-y-6=0.(3)等軸雙曲線y216-x216=1的漸近線方程為y=±x.∴直線AB與漸近線所圍成三角形為直角三角形.又漸近線與弦AB所在直線的交點坐標分別為(6,6),(2,-2),∴直角三角形兩條直角邊的長度分別為62、22;∴直線AB與漸近線所圍成三角形的面積S=12×62×22=12.38.與直線3x+4y-3=0平行,并且距離為3的直線方程為______.答案:設所求直線上任意一點P(x,y),由題意可得點P到所給直線的距離等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故為3x+4y-18=0或3x+4y+12=0.39.半徑為R的球內接一個正方體,則該正方體的體積為()A.22RB.4π3R3C.893R3D.193R3答案:∵半徑為R的球內接一個正方體,設正方體棱長為a,正方體的對角線過球心,可得正方體對角線長為:a2+a2+a2=2R,可得a=2R3,∴正方體的體積為a3=(2R3)3=83R39,故選C;40.在極坐標系中,曲線ρ=4sinθ和ρcosθ=1相交于點A、B,則|AB|=______.答案:將其化為直角坐標方程為x2+y2-4y=0,和x=1,代入得:y2-4y+1=0,則|AB|=|y1-y2|=(y1+y2)2-4y1y1=(4)2-4=23.故為:23.41.三段論:“①船準時啟航就能準時到達目的港,②這艘船準時到達了目的港,③這艘船是準時啟航的”中,“小前提”是______.(填序號)答案:三段論:“①船準時啟航就能準時到達目的港;②這艘船準時到達了目的港,③這艘船是準時啟航的,我們易得大前提是①,小前提是②,結論是③,故為:②.42.已知兩點P1(2,-1)、P2(0,5),點P在P1P2延長線上,且滿足P1P2=-2PP2,則P點的坐標為______.答案:設分點P(x,y),P1(2,-1)、P2(0,5),∴P1P2=(-2,6),PP2=(-x,5-y),∵P1P2=-2PP2,∴(-2,6)=-2(-x,5-y)-2=-2x,6=2y-10,∴x=-1,y=8∴P(-1,8).43.下列各個對應中,從A到B構成映射的是()A.

B.

C.

D.

答案:按照映射的定義,A中的任何一個元素在集合B中都有唯一確定的元素與之對應.而在選項A和選項B中,前一個集合中的元素2在后一個集合中沒有元素與之對應,故不符合映射的定義.選項C中,前一個集合中的元素1在后一集合中有2個元素和它對應,也不符合映射的定義,只有選項D滿足映射的定義,故選D.44.已知集合M={2,a,b},N={2a,2,b2}且M=N.求a、b的值.答案:由M=N及集合中元素的互異性,得a=2ab=b2

①或a=b2b=2a

②解①得:a=0b=1或a=0b=0,解②得:a=14b=12,當a=0b=0時,違背了集合中元素的互異性,所以舍去,故a、b的值為a=0b=1或a=14b=12.45.如圖是《集合》一章的知識結構圖,如果要加入“交集”,則應該放在()

A.“集合”的下位

B.“概念”的下位

C.“表示”的下位

D.“基本運算”的下位

答案:D46.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},則集合A∩B中的元素個數為(

)

A.0個

B.1個

C.2個

D.無窮多個答案:C47.執行程序框圖,如果輸入的n是5,則輸出的p是()

A.1

B.2

C.3

D.5

答案:D48.為了評價某個電視欄目的改革效果,在改革前后分別從居民點抽取了100位居民進行調查,經過計算K2≈0.99,根據這一數據分析,下列說法正確的是()

A.有99%的人認為該欄目優秀

B.有99%的人認為該欄目是否優秀與改革有關系

C.有99%的把握認為電視欄目是否優秀與改革有關系

D.沒有理由認為電視欄目是否優秀與改革有關系答案:D49.已知集合{2x,x+y}={7,4},則整數x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整數,舍去故為:2,550.設有三個命題:“①0<12<1.②函數f(x)=log

12x是減函數.③當0<a<1時,函數f(x)=logax是減函數”.當它們構成三段論時,其“小前提”是______(填序號).答案:三段話寫成三段論是:大前提:當0<a<1時,函數f(x)=logax是減函數,小前提:0<12<1,結論:函數f(x)=log

12x是減函數.其“小前提”是①.故為:①.第2卷一.綜合題(共50題)1.某醫療研究所為了檢驗某種血清預防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設H0:“這種血清不能起到預防感冒的作用”,利用2×2列聯表計算得Χ2≈3.918,經查對臨界值表知P(Χ2≥3.841)≈0.05.則下列結論中,正確結論的序號是______

(1)有95%的把握認為“這種血清能起到預防感冒的作用”

(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒

(3)這種血清預防感冒的有效率為95%

(4)這種血清預防感冒的有效率為5%答案:查對臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認為“這種血清能起到預防感冒的作用”950/0僅是指“血清與預防感冒”可信程度,但也有“在100個使用血清的人中一個患感冒的人也沒有”的可能.故為:(1).2.函數f(x)=11+x2(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]答案:∵函數f(x)=11+x2(x∈R),∴1+x2≥1,所以原函數的值域是(0,1],故選B.3.一個箱中原來裝有大小相同的

5

個球,其中

3

個紅球,2

個白球.規定:進行一次操

作是指“從箱中隨機取出一個球,如果取出的是紅球,則把它放回箱中;如果取出的是白

球,則該球不放回,并另補一個紅球放到箱中.”

(1)求進行第二次操作后,箱中紅球個數為

4

的概率;

(2)求進行第二次操作后,箱中紅球個數的分布列和數學期望.答案:(1)設A1表示事件“第一次操作從箱中取出的是紅球”,B1表示事件“第一次操作從箱中取出的是白球”,A2表示事件“第二次操作從箱中取出的是紅球”,B2表示事件“第二次操作從箱中取出的是白球”.則A1B2表示事件“第一次操作從箱中取出的是紅球,第二次操作從箱中取出的是白球”.由條件概率計算公式得P(A1B2)=P(A1)P(B2|A1)=35×25=625.B1A2表示事件“第一次操作從箱中取出的是白球,第二次操作從箱中取出的是紅球”.由條件概率計算公式得P(B1A2)=P(B1)P(A2|B1)=25×45=825.A1B2+B1A2表示“進行第二次操作后,箱中紅球個數為

4”,又A1B2與B1A2是互斥事件.∴P(A1B2+B1A2)=P(A1B2)+P(B1A2)=625+825=1425.(2)設進行第二次操作后,箱中紅球個數為X,則X=3,4,5.P(X=3)35×35=925,P(X=4)=1425,P(X=5)=25×15=225.進行第二次操作后,箱中紅球個數X的分布列為:進行第二次操作后,箱中紅球個數X的數學期望EX=3×925+4×1425+5×225=9325.4.已知拋物線C:x2=2py(p>0)的焦點為F,拋物線上一點A的橫坐標為x1(x1>0),過點A作拋物線C的切線l1交x軸于點D,交y軸于點Q,交直線l:y=p2于點M,當|FD|=2時,∠AFD=60°.

(1)求證:△AFQ為等腰三角形,并求拋物線C的方程;

(2)若B位于y軸左側的拋物線C上,過點B作拋物線C的切線l2交直線l1于點P,交直線l于點N,求△PMN面積的最小值,并求取到最小值時的x1值.答案:(1)設A(x1,x122p),則A處的切線方程為l1:y=x1px-x122p,可得:D(x12,0),Q(0,-x212p)∴|FQ|=p2+x212p=|AF|;∴△AFQ為等腰三角形.由點A,Q,D的坐標可知:D為線段AQ的中點,∴|AF|=4,得:p2+x212p=4x21+p2=16∴p=2,C:x2=4y.(2)設B(x2,y2)(x2<0),則B處的切線方程為y=x22x-x224聯立y=x22x-x224y=x12x-x214得到點P(x1+x22,x1x24),聯立y=x12x-x214y=1得到點M(x12+2x1,1).同理N(x22+2x2,1),設h為點P到MN的距離,則S△=12|MN|?h=12×(x12+2x1-x22-2x2)(1-x1x24)=(x2-x1)(4-x1x2)216x1x2

①設AB的方程為y=kx+b,則b>0,由y=kx+bx2=4y得到x2-4kx-4b=0,得x1+x2=4kx1x2=-4b代入①得:S△=16k2+16b(4+4b)264b=(1+b)2k2+bb,要使面積最小,則應k=0,得到S△=(1+b)2bb②令b=t,得S△(t)=(1+t2)2t=t3+2t+1t,則S′△(t)=(3t2-1)(t2+1)t2,所以當t∈(0,33)時,S(t)單調遞減;當t∈(33,+∞)時,S(t)單調遞增,所以當t=33時,S取到最小值為1639,此時b=t2=13,k=0,所以y1=13,解得x1=233.故△PMN面積取得最小值時的x1值為233.5.關于斜二測畫法畫直觀圖說法不正確的是()

A.在實物圖中取坐標系不同,所得的直觀圖有可能不同

B.平行于坐標軸的線段在直觀圖中仍然平行于坐標軸

C.平行于坐標軸的線段長度在直觀圖中仍然保持不變

D.斜二測坐標系取的角可能是135°答案:C6.已知集合A={x|log2x<1},B={x|0<x<c,其中c>0},若A=B,則c=______.答案:集合A={x|log2x<1}={x|0<x<2},B={x|0<x<c,其中c>0},若A=B,則c=2,故為2.7.AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為()

A.

B.3

C.2

D.2答案:A8.不等式的解集是(

A.(-∞,-1)∪(-1,2]

B.[-1,2]

C.(-∞,-1)∪[2,+∞)

D.(-1,2]答案:D9.隨機地向某個區域拋撒了100粒種子,在面積為10m2的地方有2粒種子發芽,假設種子的發芽率為100%,則整個撒種區域的面積大約有______m2.答案:設整個撒種區域的面積大約xm2,由于假設種子的發芽率為100%,所以在面積為10m2的地方有2粒種子發芽,意味著在面積為10m2的地方有2粒種子,從而有:100x=210,∴x=500,故為:500.10.(1+2x)6的展開式中x4的系數是______.答案:展開式的通項為Tr+1=2rC6rxr令r=4得展開式中x4的系數是24C64=240故為:24011.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既不充分也不必要條件答案:若a>2且b>2,則必有a+b>4且ab>4成立,故充分性易證若a+b>4且ab>4,如a=8,b=1,此時a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上證明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要條件,故選A12.若a2+b2=4,則兩圓(x-a)2+y2=1和x2+(y-b)2=1的位置關系是______.答案:若a2+b2=4,由于兩圓(x-a)2+y2=1和x2+(y-b)2=1的圓心距為(a-0)2+(0-b)2=a2+b2=2,正好等于兩圓的半徑之和,故兩圓相外切,故為相外切.13.給出的下列幾個命題:

①向量共面,則它們所在的直線共面;

②零向量的方向是任意的;

③若則存在唯一的實數λ,使

其中真命題的個數為()

A.0

B.1

C.2

D.3答案:B14.

如圖,平面內向量,的夾角為90°,,的夾角為30°,且||=2,||=1,||=2,若=λ+2

,則λ等()

A.

B.1

C.

D.2

答案:D15.從裝有兩個白球和兩個黃球的口袋中任取2個球,以下給出了三組事件:

①至少有1個白球與至少有1個黃球;

②至少有1個黃球與都是黃球;

③恰有1個白球與恰有1個黃球.

其中互斥而不對立的事件共有()組.

A.0

B.1

C.2

D.3答案:A16.用反證法證明某命題時,對結論:“自然數a,b,c中恰有一個偶數”正確的假設為()

A.a,b,c都是奇數

B.a,b,c都是偶數

C.a,b,c中至少有兩個偶數

D.a,b,c中至少有兩個偶數或都是奇數答案:D17.設函數g(x)=ex

x≤0lnx,x>0,則g(g(12))=______.答案:g(g(12))

=g(ln12)

=eln12=12故為:12.18.已知a,b,c,d都是正數,S=aa+b+d+bb+c+a+cc+d+a+dd+a+c,則S的取值范圍是______.答案:∵a,b,c,d都是正數,∴S=aa+b+d+bb+c+a+cc+d+a+dd+a+c>aa+b+c+d+ba+b+c+d+ca+b+c+d+da+b+c+d=a+b+c+da+b+c+d=1;S=aa+b+d+bb+c+a+cc+d+a+dd+a+c<aa+b+bb+a+cc+d+dd+c=2∴1<S<2.故為:(1,2)19.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A20.點A(-,1)關于y軸的對稱點A′的坐標為(

A.(-,-1)

B.(,-1)

C.(-,1)

D.(,1)答案:D21.已知正方體ABCD-A1B1C1D1,點E,F分別是上底面A1C1和側面CD1的中心,求下列各式中的x,y的值:

(1)AC1=x(AB+BC+CC1),則x=______;

(2)AE=AA1+xAB+yAD,則x=______,y=______;

(3)AF=AD+xAB+yAA1,則x=______,y=______.答案:(1)根據向量加法的首尾相連法則,x=1;(2)由向量加法的三角形法則得,AE=AA1+A1E,由四邊形法則和向量相等得,A1E=12(A1B1+A1D1)=12(AB+AD);∴AE=AA1+12AB+12AD,∴x=y=12;(3)由向量加法的三角形法則得,AF=AD+DF,由四邊形法則和向量相等得,DF=12(DC+DD1)=12(AB+AA1);∴AF=AD+12AB+12AA1,∴x=y=12.22.大家知道,在數列{an}中,若an=n,則sn=1+2+3+…+n=12n2+12n,若an=n2,則

sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,則sn=13+23+33+…+n3=an4+bn3+cn2+dn.

問:(1)這種猜想,你認為正確嗎?

(2)不管猜想是否正確,這個結論是通過什么推理方法得到的?

(3)如果結論正確,請用數學歸納法給予證明.答案:(1)猜想正確;(2)這是一種類比推理的方法;(3)由類比可猜想,a=14,n=1時,a+b+c+d=1;n=2時,16a+8b+4c+d=9;n=3時,81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用數學歸納法證明:①n=1時,結論成立;②假設n=k時,結論成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2則n=k+1時,左邊=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右邊,結論成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立23.在坐標平面內,與點A(1,2)距離為1,且與點B(3,1)距離為2的直線共有()A.1條B.2條C.3條D.4條答案:分別以A、B為圓心,以1、2為半徑作圓,兩圓的公切線有兩條,即為所求.故選B.24.設集合A={1,3},集合B={1,2,4,5},則集合A∪B=()A.{1,3,1,2,4,5}B.{1}C.{1,2,3,4,5}D.{2,3,4,5}答案:∵集合A={1,3},集合B={1,2,4,5},∴集合A∪B={1,2,3,4,5}.故選C.25.點B是點A(1,2,3)在坐標平面yOz內的正投影,則|OB|等于()

A.

B.

C.

D.答案:B26.已知兩條直線a1x+b1y+1=0和a2x+b2y+1=0都過點A(2,3),則過兩點P1(a1,b1),P2(a2,b2)的直線方程為______.答案:∵A(2,3)是直線a1x+b1y+1=0和a2x+b2y+1=0的公共點,∴2a1+3b1+1=0,且2a2+3b2+1=0,即兩點P1(a1,b1),P2(a2,b2)的坐標都適合方程2x+3y+1=0,∴兩點(a1,b1)和(a2,b2)都在同一條直線2x+3y+1=0上,故點(a1,b1)和(a2,b2)所確定的直線方程是2x+3y+1=0,故為:2x+3y+1=0.27.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有實數解,求a的值.答案:設方程的實根為x0,則方程(1+i)x2-2(a+i)x+5-3i=0可化為(x20-2ax0+5)+(x20-2x0-3)i=0由復數相等的充要條件可得x20-2ax0+5=0①x20-2x0-3=0

②由②得x0=3或-1,代入①得a=73或-3∴a=73或-328.從甲、乙兩人手工制作的圓形產品中,各自隨機抽取6件,測得其直徑如下(單位:cm):

甲:9.00,9.20,9.00,8.50,9.10,9.20

乙:8.90,9.60,9.50,8.54,8.60,8.90

據以上數據估計兩人的技術穩定性,結論是()

A.甲優于乙

B.乙優于甲

C.兩人沒區別

D.無法判斷答案:A29.若3π2<α<2π,則直線xcosα+ysinα=1必不經過()A.第一象限B.第二象限C.第三象限D.第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直線過(0,sinα),(cosα,0)兩點,因而直線不過第二象限.故選B30.某學校為了解高一男生的百米成績,隨機抽取了50人進行調查,如圖是這50名學生百米成績的頻率分布直方圖.根據該圖可以估計出全校高一男生中百米成績在[13,14]內的人數大約是140人,則高一共有男生______人.

答案:第三和第四個小矩形面積之和為(0.72+0.68)×0.5=0.7,即百米成績在[13,14]內的頻率為:0.7,因為根據該圖可以估計出全校高一男生中百米成績在[13,14]內的人數大約是140人,則高一共有男生1400.7=200人.故為:200.31.已知直線的傾斜角為α,且cosα=45,則此直線的斜率是______.答案:∵直線l的傾斜角為α,cosα=45,∴α的終邊在第一象限,故sinα=35故l的斜率為tanα=sinαcosα=34故為:3432.“所有9的倍數(M)都是3的倍數(P),某奇數(S)是9的倍數(M),故此奇數(S)是3的倍數(P)”,上述推理是()

A.小前提錯

B.結論錯

C.正確的

D.大前提錯答案:C33.已知:集合A={x,y},B={2,2y},若A=B,則x+y=______.答案:∵集合A={x,y},B={2,2y},而A=B∴x=2y=0或x=2yy=2即x=4y=2∴x+y=2或6故為:2或634.已知向量OC=(2,2),CA=(2cosa,2sina),則向量.OA的模的最大值是()A.3B.32C.2D.18答案:∵OA=OC+CA=(2+2cosa,2+2sina)|OA|=(2+2cosa)2+(2+2sina)2=10+8sin(a+π4)∴|OA|≤18=32故選B.35.在如圖所示的莖葉圖中,甲、乙兩組數據的中位數分別是______.答案:由莖葉圖可得甲組共有9個數據中位數為45乙組共9個數據中位數為46故為45、4636.已知兩個力F1,F2的夾角為90°,它們的合力大小為10N,合力與F1的夾角為60°,那么F2的大小為()A.53NB.5NC.10ND.52N答案:由題意可知:對應向量如圖由于α=60°,∴F2的大小為|F合|?sin60°=10×32=53.故選A.37.已知隨機變量ξ~N(3,22),若ξ=2η+3,則Dη=()

A.0

B.1

C.2

D.4答案:B38.橢圓的短軸長是2,一個焦點是(3,0),則橢圓的標準方程是______.答案:∵橢圓的一個焦點是(3,0),∴c=3,又∵短軸長是2,∴2b=2.b=1,∴a2=4∵焦點在x軸上,∴橢圓的標準方程是x24+y2=1故為x24+y2=139.參數方程(θ為參數)化為普通方程是()

A.2x-y+4=0

B.2x+y-4=0

C.2x-y+4=0,x∈[2,3]

D.2x+y-4=0,x∈[2,3]答案:D40.已知l1、l2是過點P(-2,0)的兩條互相垂直的直線,且l1、l2與雙曲線y2-x2=1各有兩個交點,分別為A1、B1和A2、B2.

(1)求l1的斜率k1的取值范圍;

(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)顯然l1、l2斜率都存在,否則l1、l2與曲線不相交.設l1的斜率為k1,則l1的方程為y=k1(x+2).聯立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根據題意得k12-1≠0,②△1>0,即有12k12-4>0.③完全類似地有1k21-1≠0,④△2>0,即有12?1k21-4>0,⑤從而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦長公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全類似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.從而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).41.設點P對應的復數為-3+3i,以原點為極點,實軸正半軸為極軸建立極坐標系,則點P的極坐標為()

A.(3,π)

B.(-3,π)

C.(3,π)

D.(-3,π)答案:A42.求由曲線圍成的圖形的面積.答案:面積為解析:當,時,方程化成,即.上式表示圓心在,半徑為的圓.所以,當,時,方程表示在第一象限的部分以及軸,軸負半軸上的點,.同理,當,時,方程表示在第四象限的部分以及軸負半軸上的點;當,時,方程表示圓在第二象限的部分以及軸負半軸上的點;當,時,方程表示圓在第三象限部分.以上合起來構成如圖所示的圖形,面積為.43.某批n件產品的次品率為1%,現在從中任意地依次抽出2件進行檢驗,問:

(1)當n=100,1000,10000時,分別以放回和不放回的方式抽取,恰好抽到一件次品的概率各是多少?(精確到0.00001)

(2)根據(1),談談你對超幾何分布與二項分布關系的認識.答案:(1)當n=100時,如果放回,這是二項分布.抽到的2件產品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.100件產品中次品數為1,正品數是99,從100件產品里抽2件,總的可能是C1002,次品的可能是C11C991.所以概率為C11C199C2100=0.2.當n=1000時,如果放回,這是二項分布.抽到的2件產品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.1000件產品中次品數為10,正品數是990,從1000件產品里抽2件,總的可能是C10002,次品的可能是C101C9901.所以概率為是C110C1990C21000≈0.0198.如果放回,這是二項分布.抽到的2件產品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.10000件產品中次品數為1000,正品數是9000,從10000件產品里抽2件,總的可能是C100002,次品的可能是C1001C99001.所以概率為C1100?C19900C210000≈0.0198.(2)對超幾何分布與二項分布關系的認識:共同點:每次試驗只有兩種可能的結果:成功或失敗.不同點:1、超幾何分布是不放回抽取,二項分布是放回抽取;

2、超幾何分布需要知道總體的容量,二項分布不需要知道總體容量,但需要知道“成功率”;聯系:當產品的總數很大時,超幾何分布近似于二項分布.44.已知正方形ABCD的邊長為1,=,=,=,則|++|等于(

A.0

B.2

C.

D.3答案:B45.若某簡單組合體的三視圖(單位:cm)如圖所示,說出它的幾何結構特征,并求該幾何體的表面積。答案:解:該幾何體由球和圓臺組成。球的半徑為1,圓臺的上下底面半徑分別為1、4,高為4,母線長為5,S球=4πcm2,S臺=π(12+42+1×5+4×5)=42πcm2,故S表=S球+S臺=46πcm2。46.如圖,D、E分別在AB、AC上,下列條件不能判定△ADE與△ABC相似的有()

A.∠AED=∠B

B.

C.

D.DE∥BC

答案:C47.若圖中的直線l1、l2、l3的斜率分別為k1、k2、k3,則()A.k1<k2<k3B.k2<k1<k3C.k3<k2<k1D.k1<k3<k2答案:因為直線的斜率是其傾斜角的正切值,當傾斜角大于90°小于180°時,斜率為負值,當傾斜角大于0°小于90°時斜率為正值,且正切函數在(0°,90°)上為增函數,由圖象三條直線的傾斜角可知,k2<k1<k3.故選C.48.”m>n>0”是”方程mx2+ny2=1表示焦點在y軸上的橢圓”的()

A.充分而不必要條件

B.必要而不充分條件

C.充要條件

D.既不充分也不必要條件答案:C49.若向量的起點與終點M、A、B、C互不重合且無三點共線,且滿足下列關系(O為空間任一點),則能使向量成為空間一組基底的關系是()

A.

B.

C.

D.答案:C50.已知直線l的方程為x=2-4

ty=1+3

t,則直線l的斜率為______.答案:直線x=2-4

ty=1+3

t,所以直線的普通方程為:(y-1)=-34(x-2);所以直線的斜率為:-34;故為:-34.第3卷一.綜合題(共50題)1.正方形ABCD中,AB=1,分別以A、C為圓心作兩個半徑為R、r(R>r)的圓,當R、r滿足條件______時,⊙A與⊙C有2個交點(

A.R+r>

B.R-r<<R+r

C.R-r>

D.0<R-r<答案:B2.圓ρ=5cosθ-5sinθ的圓心的極坐標是()

A.(-5,-)

B.(-5,)

C.(5,)

D.(-5,)答案:A3.已知邊長為1的正方形ABCD,則|AB+BC+CD|=______.答案:利用向量加法的幾何性質,得AB+BC=AC∴AB+BC+CD=AD因為正方形的邊長等于1所以|AB+BC+CD|=|AD|

=1故為:14.若a>0,b>0,則不等式-b<aA.<x<0或0<x<

答案:D解析:試題分析:5.直線過原點且傾角的正弦值是45,則直線方程為______.答案:因為傾斜角α的范圍是:0≤α<π,又由題意:sinα=45所以:tanα=±43x直線過原點,由直線的點斜式方程得到:y=±43x故為:y=±43x6.設、、是三角形的邊長,求證:

≥答案:證明見解析解析:證明:由不等式的對稱性,不防設≥≥,則≥左式-右式≥≥≥07.若向量a=(3,0),b=(2,2),則a與b夾角的大小是()

A.0

B.

C.

D.答案:B8.已知空間四邊形OABC,M,N分別是OA,BC的中點,且OA=a,OB=b,OC=c,用a,b,c表示向量MN為()A.12a+12b+12cB.12a-12b+12cC.-12a+12b+12cD.-12a+12b-12c答案:如圖所示,連接ON,AN,則ON=12(OB+OC)=12(b+c),AN=12(AC+AB)=12(OC-2OA+OB)=12(-2a+b+c)=-a+12b+12c,所以MN=12(ON+AN)=-12a+12b+12c.故選C.9.一個袋子里裝有大小相同的3個紅球和2個黃球,從中同時取出2個球,則其中含紅球個數的數學期望是

______.答案:設含紅球個數為ξ,ξ的可能取值是0、1、2,當ξ=0時,表示從中取出2個球,其中不含紅球,當ξ=1時,表示從中取出2個球,其中1個紅球,1個黃球,當ξ=2時,表示從中取出2個球,其中2個紅球,∴P(ξ=0)=C22C25=0.1,P(ξ=1)=C12C13C25=0.6P(ξ=2)=C23C25=0.3∴Eξ=0×0.1+1×0.6+2×0.3=1.2.故為:1.2.10.直線L1:ax+3y+1=0,L2:2x+(a+1)y+1=0,若L1∥L2,則a的值為(

A.-3

B.2

C.-3或2

D.3或-2答案:A11.若圖中直線l1,l2,l3的斜率分別為k1,k2,k3,則()A.k2<k1<k3B.k3<k2<k1C.k2<k3<k1D.k1<k3<k2答案:∵直線l2的傾斜角為鈍角,∴k2<0.直線l1,l3的傾斜角為銳角,且直線l1的傾斜角小于l3的傾斜角,∴0<k1<k3.故選A.12.若關于x的不等式xa2-2xa-3<0在[-1,1]上恒成立,則實數a的取值范圍是

A.[-1,1]

B.[-1,3]

C.(-1,1)

D.(-1,3)答案:D13.已知直線l1:y=kx+(k<0=被圓x2+y2=4截得的弦長為,則l1與直線l2:y=(2+)x的夾角的大小是()

A.30°

B.45°

C.60°

D.75°答案:B14.若直線l經過原點和點A(-2,-2),則它的斜率為()

A.-1

B.1

C.1或-1

D.0答案:B15.國旗上的正五角星的每一個頂角是多少度?答案:由圖可知:∠AFG=∠C+∠E=2∠C,∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A∴5∠A=180°,∴∠A=36°.16.閱讀如圖所示的程序框,若輸入的n是100,則輸出的變量S的值是()A.5051B.5050C.5049D.5048答案:根據流程圖所示的順序,該程序的作用是累加并輸出S=100+99+98+…+2,∵100+99+98+…+2=5049,故選C.17.2008年9月25日下午4點30分,“神舟七號”載人飛船發射升空,其運行的軌道是以地球的中心F為一個焦點的橢圓,若這個橢圓的長軸長為2a,離心率為e,則“神舟七號”飛船到地球中心的最大距離為______.答案:如圖,根據橢圓的幾何性質可知,頂點B到橢圓的焦點F的距離最大.最大為a+c=a+ae.故為:a+ae.18.已知0<a<2,復數z的實部為a,虛部為1,則|z|的取值范圍是()A.(1,5)B.(1,3)C.(1,5)D.(1,3)答案:|z|=a2+1,而0<a<2,∴1<|z|<5,故選C.19.已知|a|=1,|b|=2,<a,b>=60°,則|2a+b|=______.答案:∵|a|=1,|b|=2,<a,b>=60°,∴a?b=|a|×|b|cos60°=1由此可得(2a+b)2=4a2+4a?b+b2=4×12+4×1+22=12∴|2a+b|=(2a+b)2=23故為:2320.已知=(3,4),=(5,12),與則夾角的余弦為()

A.

B.

C.

D.答案:A21.設點P(,1)(t>0),則||(O為坐標原點)的最小值是()

A.3

B.5

C.

D.答案:D22.在空間直角坐標系中,點P(2,-4,6)關于y軸對稱點P′的坐標為P′(-2,-4,-6)P′(-2,-4,-6).答案:∵在空間直角坐標系中,點(2,-4,6)關于y軸對稱,∴其對稱點為:(-2,-4,-6),故為:(-2,-4,-6).23.命題:“若a>0,則a2>0”的否命題是()A.若a2>0,則a>0B.若a<0,則a2<0C.若a≤0,則a2≤0D.若a≤0,則a2≤0答案:否命題是將條件,結論同時否定,∴若a>0,則a2>0”的否命題是若a≤0,則a2≤0,故為:C24.函數y=f(x)對任意實數x,y都有f(x+y)=f(x)+f(y)+2xy.

(1)求f(0)的值;

(2)若f(1)=1,求f(2),f(3),f(4)的值,猜想f(n)的表達式并用數學歸納法證明你的結論;

(3)若f(1)≥1,求證:f(12n)>0(n∈N*).答案:(1)令x=y=0得f(0+0)=f(0)+f(0)+2×0×0?f(0)=0(2)f(1)=1,f(2)=f(1+1)=1+1+2=4f(3)=f(2+1)=4+1+2×2×1=9f(4)=f(3+1)=9+1+2×3×1=16猜想f(n)=n2,下用數學歸納法證明之.①當n=1時猜想成立.②假設n=k時猜想成立,即:f(k)=k2,那么f(k+1)=f(k)+f(1)+2k=k2+2k+1=(k+1)2.這就是說n=k+1時猜想也成立.對于一切n≥1,n∈N+猜想都成立.(3)f(1)≥1,則f(1)=2f(12)+2×12×12≥1?f(12)≥14>0假設n=k(k∈N*)時命題成立,即f(12k)≥122k>0,則f(12k)=2f(12k+1)+2×12k+1×12k+1≥122k?f(12k+1)≥122(k+1),由上知,則f(12n)>0(n∈N*).25.若(1+2)5=a+b2(a,b為有理數),則a+b=()A.45B.55C.70D.80答案:解析:由二項式定理得:(1+2)5=1+C512+C52(2)2+C53(2)3+C54(2)4+C55?(2)5=1+52+20+202+20+42=41+292,∴a=41,b=29,a+b=70.故選C26.過點P(2,3)且以a=(1,3)為方向向量的直線l的方程為______.答案:設直線l的另一個方向向量為a=(1,k),其中k是直線的斜率可得a=(1,3)與a=(1,k)互相平行∴11=k3?k=3,所以直線l的點斜式方程為:y-3=3(x-2)化成一般式:3x-y-3=0故為:3x-y-3=0.27.已知直線l過點P(2,1)且與x軸、y軸的正半軸分別交于A、B兩點,O為坐標原點,則三角形OAB面積的最小值為______.答案:設A(a,0)、B(0,b),a>0,b>0,AB方程為xa+

yb=1,點P(2,1)代入得2a+1b=1≥22ab,∴ab≥8

(當且僅當a=4,b=2時,等號成立),故三角形OAB面積S=12

ab≥4,故為4.28.在空間直角坐標系中,已知A,B兩點的坐標分別是A(2,3,5),B(3,1,4),則這兩點間的距離|AB|=______.答案:∵A,B兩點的坐標分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.29.畫出《數學3》第一章“算法初步”的知識結構圖.答案:《數學3》第一章“算法初步”的知識包括:算法、程序框圖、算法的三種基本邏輯結構和框圖表示、基本算法語句.算法的三種基本邏輯結構和框圖表示就是順序結構、條件結構、循環結構,基本算法語句是指輸入語句、輸出語句、賦值語句、條件語句和循環語句.故《數學3》第一章“算法初步”的知識結構圖示意圖如下:30.若0<x<1,則2x,(12)x,(0.2)x之間的大小關系為()A.2x<(0.2)x<(12)xB.2x<(12)x<(0.2)xC.(12)x<(0.2)x<2xD.(0.2)x<(12)x<2x答案:由題意考察冪函數y=xn(0<n<1),利用冪函數的性質,∵0<n<1,∴冪函數y=xn在第一象限是增函數,又2>12>0.2∴2x>(12)x>(0.2)x故選D31.(文)不等式的解集是(

)A.B.C.D.答案:D解析:【思路分析】:原不等式可化為,得,故選D.【命題分析】考查不等式的解法,要求同解變形.32.若向量=(1,λ,2),=(-2,1,1),,夾角的余弦值為,則λ等于()

A.1

B.-1

C.±1

D.2答案:A33.化簡下列各式:

(1)AB+DF+CD+BC+FA=______;

(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故為:(1)0;(2)AC34.直線ax+by=1與圓x2+y2=1有兩不同

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論