




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區的她2023年平頂山文化藝術職業學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.已知a≠0,證明關于x的方程ax=b有且只有一個根.答案:證明:一方面,∵ax=b,且a≠0,方程兩邊同除以a得:x=ba,∴方程ax=b有一個根x=ba,另一方面,假設方程ax=b還有一個根x0且x0≠ba,則由此不等式兩邊同乘以a得ax0≠b,這與假設矛盾,故方程ax=b只有一個根.綜上所述,方程ax=b有且只有一個根.2.已知隨機變量X~B(n,0.8),D(X)=1.6,則n的值是()
A.8
B.10
C.12
D.14答案:B3.設兩個正態分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲線如圖所示,則有()
A.μ1<μ2,σ1>σ2
B.μ1<μ2,σ1<σ2
C.μ1>μ2,σ1>σ2
D.μ1>μ2,σ1<σ2
答案:A4.函數y=ax+b和y=bax(a≠0,b>0,且b≠1)的圖象只可能是()A.
B.
C.
D.
答案:對于A:函數y=ax+b遞增可得a>0,0<b<1;函數y=bax(a≠0,b>0,且b≠1)遞減可得0<b<1且a>0故A正確對于B:函數y=ax+b遞增可得a>0,b>1;函數y=bax(a≠0,b>0,且b≠1)遞減可得0<b<1且a>0,矛盾,故B不正確對于C:函數y=ax+b遞減可得a<0,0<b<1;函數y=bax(a≠0,b>0,且b≠1)遞減可得0<b<1且a>0,矛盾,故C不正確對于D:函數y=ax+b遞減可得a<0,b>1;函數y=bax(a≠0,b>0,且b≠1)遞增可得b>1且a>0,矛盾,故D不正確故選A5.在平面直角坐標系xoy中,曲線C1的參數方程為x=4cosθy=2sinθ(θ為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,得曲線C2的極坐標方程為ρ=2cosθ-4sinθ(ρ>0).
(Ⅰ)化曲線C1、C2的方程為普通方程,并說明它們分別表示什么曲線;
(Ⅱ)設曲線C1與x軸的一個交點的坐標為P(m,0)(m>0),經過點P作曲線C2的切線l,求切線l的方程.答案:(Ⅰ)曲線C1:x216+y24=1;曲線C2:(x-1)2+(y+2)2=5;(3分)曲線C1為中心是坐標原點,焦點在x軸上,長半軸長是4,短半軸長是2的橢圓;曲線C2為圓心為(1,-2),半徑為5的圓(2分)(Ⅱ)曲線C1:x216+y24=1與x軸的交點坐標為(-4,0)和(4,0),因為m>0,所以點P的坐標為(4,0),(2分)顯然切線l的斜率存在,設為k,則切線l的方程為y=k(x-4),由曲線C2為圓心為(1,-2),半徑為5的圓得|k+2-4k|k2+1=5,解得k=3±102,所以切線l的方程為y=3±102(x-4)(3分)6.已知直線l:ax+by=1(ab>0)經過點P(1,4),則l在兩坐標軸上的截距之和的最小值是______.答案:∵直線l:ax+by=1(ab>0)經過點P(1,4),∴a+4b=1,故a、b都是正數.故直線l:ax+by=1,此直線在x、y軸上的截距分別為1a、1b,則l在兩坐標軸上的截距之和為1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,當且僅當4ba=ab時,取等號,故為9.7.已知直線經過點,傾斜角,設與圓相交與兩點,求點到兩點的距離之積。答案:2解析:把直線代入得,則點到兩點的距離之積為8.袋中有4只紅球3只黑球,從袋中任取4只球,取到1只紅球得1分,取到1只黑球得3分,設得分為隨機變量ξ,則P(ξ≤6)=______.答案:取出的4只球中紅球個數可能為4,3,2,1個,黑球相應個數為0,1,2,3個.其分值為ξ=4,6,8.P(ξ≤6)=P(ξ=4)+P(ξ=6)=C44C03C47+C34C13C47=1335.故為:1335.9.若不等式(﹣1)na<2+對任意n∈N*恒成立,則實數a的取值范圍是
[
]A.[﹣2,)
B.(﹣2,)
C.[﹣3,)
D.(﹣3,)答案:A10.在圖中,M、N是圓柱體的同一條母線上且位于上、下底面上的兩點,若從M點繞圓柱體的側面到達N,沿怎么樣的路線路程最短?答案:沿圓柱體的母線MN將圓柱的側面剪開輔平,得出圓柱的側面展開圖,從M點繞圓柱體的側面到達N點,實際上是從側面展開圖的長方形的一個頂點M到達不相鄰的另一個頂點N.而兩點間以線段的長度最短.所以最短路線就是側面展開圖中長方形的一條對角線.如圖所示.11.用行列式討論關于x,y
的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當m≠-1,m≠1時,D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當m=-1時,D=0,Dx≠0,方程組無解;…(2分)(3)當m=1時,D=Dx=Dy=0,方程組有無窮多組解,此時方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒寫出解扣1分)12.某化肥廠甲、乙兩個車間包裝肥料,在自動包裝傳送帶上每隔30min抽取一包產品,稱其重量,分別記錄抽查數據如下:
甲:86、72、92、78、77;
乙:82、91、78、95、88
(1)這種抽樣方法是哪一種?
(2)將這兩組數據用莖葉圖表示;
(3)將兩組數據比較,說明哪個車間產品較穩定.答案:(1)因為間隔時間相同,故是系統抽樣.(2)莖葉圖如下:.(3)因為.x甲=15(86+72+92+78+77)=81,.x乙=15(82+92+78+95+88)=87,所以s甲2=15(52+92+92+72+42)=50.4,s乙2=15(52+52+92+82+12)=39.2,而s甲2>s乙2,所以乙車間產品較穩定.13.點P(2,1)到直線
3x+4y+10=0的距離為()A.1B.2C.3D.4答案:由P(2,1),直線方程為3x+4y+10=0,則P到直線的距離d=|6+4+10|32+42=4.故選D14.已知隨機變量X的分布列是:(
)
X
4
a
9
10
P
0.3
0.1
b
0.2
且EX=7.5,則a的值為()
A.5
B.6
C.7
D.8答案:C15.已知點M在z軸上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,則點M的坐標是
______.答案:∵點M在z軸上,∴設點M的坐標為(0,0,z)又|MA|=|MB|,由空間兩點間的距離公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故點M的坐標是(0,0,-3).故為:(0,0,-3).16.設,,,則P,Q,R的大小順序是(
)
A.P>Q>R
B.P>R>Q
C.Q>P>R
D.Q>R>P答案:B17.(選做題)已知x+2y=1,則x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上點的距離的平方∴x2+y2的最小值是(0,0)到x+2y=1的距離d的平方據點到直線的距離公式得d=11+4=15∴x2+y2的最小值是15故為1518.不等式-x≤1的解集是(
)。答案:{x|0≤x≤2}19.求圓心在直線y=-4x上,并且與直線l:x+y-1=0相切于點P(3,-2)的圓的方程.答案:設圓的方程為(x-a)2+(y-b)2=r2(r>0)由題意有:b=-4a|a+b+1|2=rb+2a-3?(-1)=-1解之得a=1b=-4r=22∴所求圓的方程為(x-1)2+(y+4)2=820.函數f(x)=8xx2+2(x>0)()A.當x=2時,取得最小值83B.當x=2時,取得最大值83C.當x=2時,取得最小值22D.當x=2時,取得最大值22答案:f(x)=8xx2+2=8x+2x≤822(x>0)=22當且僅當x=2x即x=2時,取得最大值22故選D.21.某人從家乘車到單位,途中有3個交通崗亭.假設在各交通崗遇到紅燈的事件是相互獨立的,且概率都是0.4,則此人上班途中遇紅燈的次數的期望為()
A.0.4
B.1.2
C.0.43
D.0.6答案:B22.某個命題與自然數n有關,若n=k(k∈N*)時命題成立,那么可推得當n=k+1時該命題也成立.現已知當n=5時,該命題不成立,那么可推得()
A.當n=6時,該命題不成立
B.當n=6時,該命題成立
C.當n=4時,該命題不成立
D.當n=4時,該命題成立答案:C23.在某項體育比賽中,七位裁判為一選手打出的分數如下:
90
89
90
95
93
94
93
去掉一個最高分和一個最低分后,所剩數的平均值和方差分別為()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B24.若直線ax+by+c=0(a,b,c都是正數)與圓x2+y2=1相切,則以a,b,c為邊長的三角形是()
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不能確定答案:B25.參數方程為t為參數)表示的曲線是()
A.一條直線
B.兩條直線
C.一條射線
D.兩條射線答案:D26.已知命題p、q,若命題“p∨q”與命題“¬p”都是真命題,則()A.命題q一定是真命題B.命題q不一定是真命題C.命題p不一定是假命題D.命題p與命題q的真值相等答案:∵命題“¬p”與命題“p∨q”都是真命題,∴命題p為假命題,q為真命題.故選A.27.已知P:2+2=5,Q:3>2,則下列判斷錯誤的是()A.“P或Q”為真,“非Q”為假B.“P且Q”為假,“非P”為真C.“P且Q”為假,“非P”為假D.“P且Q”為假,“P或Q”為真答案:∵P:2+2=5,假;Q:3>2,真;∴“非P”為真,“非Q”為假,∴“P或Q”為真,“P且Q”為假,∴A,B,D均正確;C錯誤.故選C.28.回歸直線方程必定過點()A.(0,0)B.(.x,0)C.(0,.y)D.(.x,.y)答案:∵線性回歸方程一定過這組數據的樣本中心點,∴線性回歸方程y=bx+a表示的直線必經過(.x,.y).故選D.29.一只螞蟻在三邊邊長分別為3,4,5的三角形的邊上爬行,某時刻該螞蟻距離三角形的三個頂點的距離均超過1的概率為______.答案:如下圖所示,當螞蟻位于圖中紅色線段上時,距離三角形的三個頂點的距離均超過1,由已知易得:紅色線段的長度和為:6三角形的周長為:12故P=612=12故為:1230.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,則實數a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負時,由韋達定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負根時,-1≤a≤178故為:-1≤a≤17831.“a2+b2≠0”的含義為()A.a和b都不為0B.a和b至少有一個為0C.a和b至少有一個不為0D.a不為0且b為0,或b不為0且a為0答案:a2+b2≠0的等價條件是a≠0或b≠0,即兩者中至少有一個不為0,對照四個選項,只有C與此意思同,C正確;A中a和b都不為0,是a2+b2≠0充分不必要條件;B中a和b至少有一個為0包括了兩個數都是0,故不對;D中只是兩個數僅有一個為0,概括不全面,故不對;故選C32.某工程隊有6項工程需要單獨完成,其中工程乙必須在工程甲完成后才能進行,工程丙必須在工程乙完成后才能進行,有工程丁必須在工程丙完成后立即進行.那么安排這6項工程的不同排法種數是______.(用數字作答)答案:依題意,乙必須在甲后,丙必須在乙后,丙丁必相鄰,且丁在丙后,只需將剩余兩個工程依次插在由甲、乙、丙丁四個工程之間即可,第一個插入時有4種,第二個插入時共5個空,有5種方法;可得有5×4=20種不同排法.故為:2033.設x1、x2、y1、y2是實數,且滿足x12+x22≤1,
證明不等式(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).答案:證明略解析:分析:要證原不等式成立,也就是證(x1y1+x2y2-1)2-(x12+x22-1)(y12+y22-1)≥0.(1)當x12+x22=1時,原不等式成立.……………3分(2)當x12+x22<1時,聯想根的判別式,可構造函數f(x)=(x12+x22-1)x-2(x1y1+x2y2-1)x+(y12+y22-1)…7分其根的判別式Δ=4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1).………9分由題意x12+x22<1,函數f(x)的圖象開口向下.又∵f(1)=x12+x22-2x1y1-2x2y2+y12+y22=(x1-y1)2+(x2-y2)2≥0,………11分因此拋物線與x軸必有公共點.∴Δ≥0.∴4(x1y1+x2y2-1)2-4(x12+x22-1)(y12+y22-1)≥0,…………13分即(x1y1+x2y2-1)2≥(x12+x22-1)(y12+y22-1).……………14分34.設集合A={l,2},B={2,4),則A∪B=()A.{1}B.{4}C.{l,4}D.{1,2,4}答案:∵集合A={1,2},集合B={2,4},∴集合A∪B={1,2,4}.故選D.35.將4封不同的信隨機地投入到3個信箱里,記有信的信箱個數為ξ,試求ξ的分布列.答案:由題意知變量ξ的可能取值是1,2,3,P(ξ=1)=C1334=127,P(ξ=2)=C23(2C14+C24)34=1427,P(ξ=3)=C24A3334=1227,∴ξ的分布列是36.直線y=3x+3的傾斜角的大小為______.答案:∵直線y=3x+3的斜率等于3,設傾斜角等于α,則0°≤α<180°,且tanα=3,∴α=60°,故為60°.37.一個正三棱錐的底面邊長等于一個球的半徑,該正三棱錐的高等于這個球的直徑,則球的體積與正三棱錐體積的比值為()
A.
B.
C.
D.答案:A38.在某項體育比賽中,七位裁判為一選手打出分數的莖葉圖如圖,去掉一個最高分和一個攝低分后,該選手的平均分為()A.90B.91C.92D.93答案:由圖表得到評委為該選手打出的7個分數數據為:89,90,90,93,93,94,95.去掉一個最低分89,去掉一個最高分95,該選手得分的平均數為15(90+90+93+93+94)=92.故選C.39.直線3x+4y-12=0和3x+4y+3=0間的距離是
______.答案:由兩平行線間的距離公式得直線3x+4y-12=0和3x+4y+3=0間的距離是|-12-3|5=3,故為3.40.某市為研究市區居民的月收入調查了10000人,并根據所得數據繪制了樣本的頻率分布直方圖(如圖).
(Ⅰ)求月收入在[3000,3500)內的被調查人數;
(Ⅱ)估計被調查者月收入的平均數(同一組中的數據用該組區間的中點值作代表).
答案:(I)10000×0.0003×500=1500(人)∴月收入在[3000,3500)內的被調查人數1500人(II).x=1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400∴估計被調查者月收入的平均數為240041.點B是點A(1,2,3)在坐標平面yOz內的正投影,則|OB|等于()
A.
B.
C.
D.答案:B42.若a,b∈R,求證:≤+.答案:證明略解析:證明
當|a+b|=0時,不等式顯然成立.當|a+b|≠0時,由0<|a+b|≤|a|+|b|≥,所以=≤=≤+.43.“因為對數函數y=logax是增函數(大前提),而y=logx是對數函數(小前提),所以y=logx是增函數(結論).”上面推理的錯誤是()
A.大前提錯導致結論錯
B.小前提錯導致結論錯
C.推理形式錯導致結論錯
D.大前提和小前提都錯導致結論錯答案:A44.若兩直線l1,l2的傾斜角分別為α1,α2,則下列四個命題中正確的是()
A.若α1<α2,則兩直線斜率k1<k2
B.若α1=α2,則兩直線斜率k1=k2
C.若兩直線斜率k1<k2,則α1<α2
D.若兩直線斜率k1=k2,則α1=α2答案:D45.定義在R上的二次函數y=f(x)在(0,2)上單調遞減,其圖象關于直線x=2對稱,則下列式子可以成立的是()
A.
B.
C.
D.答案:D46.極坐標方程pcosθ=表示()
A.一條平行于x軸的直線
B.一條垂直于x軸的直線
C.一個圓
D.一條拋物線答案:B47.已知原點O(0,0),則點O到直線4x+3y+5=0的距離等于
______.答案:利用點到直線的距離公式得到d=|5|42+32=1,故為1.48.一支田徑隊有男運動員112人,女運動員84人,用分層抽樣的方法從全體男運動員中抽出了32人,則應該從女運動員中抽出的人數為()
A.12
B.13
C.24
D.28答案:C49.已知P(4,-9),Q(-2,3)且Y軸與線段PQ交于M,則Q分的比為()
A.-2
B.-
C.
D.3答案:B50.若P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點,則該弦所在直線的普通方程為______.答案:∵曲線x=1+5cosθy=5sinθ(0≤θ<2π),∴(x-1)2+y2=25,∵P(2,-1)為曲線x=1+5cosθy=5sinθ(0≤θ<2π)的弦的中點,設過點P(2,-1)的弦與(x-1)2+y2=25交于A(x1,y1),B(x2,y2),則x1+x2=4y1+y2=-2,把A(x1,y1),B(x2,y2)代入(x-1)2+y2=25,得(x1-1)2+y
12=25(x2-1)2+y22=25,∴x12-2x1+1+y12=25,①x22-2x2+1+y22=25,②,①-②,得4(x1-x2)-2(x1-x2)-2(y1-y2)=0,∴k=y1-y2x1-x2=1,∴該弦所在直線的普通方程為y+1=x-2,即x-y-3=0.故為:x-y-3=0.第2卷一.綜合題(共50題)1.一牧場有10頭牛,因誤食含有病毒的飼料而被感染,已知該病的發病率為0.02.設發病的牛的頭數為ξ,則Dξ=______;.答案:∵由題意知該病的發病率為0.02,且每次實驗結果都是相互獨立的,∴ξ~B(10,0.02),∴由二項分布的方差公式得到Dξ=10×0.02×0.98=0.196.故為:0.1962.過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是______.答案:∵圓x2+y2=4的圓心是O(0,0),半徑r=2,點(0,2)到圓心O(0,0)的距離是d=0+4=2=r,∴點(0,2)在圓x2+y2=4上,∴過點(0,2)且與圓x2+y2=4只有一個交點的直線方程是0x+2y=4,即y=2.故為:y=2.3.已知隨機變量ξ服從二項分布ξ~B(6,),則E(2ξ+4)=()
A.10
B.4
C.3
D.9答案:A4.(選做題)已知矩陣.122x.的一個特征值為3,求另一個特征值及其對應的一個特征向量.答案:矩陣M的特征多項式為.λ-1-2-2λ-x.=(λ-1)(λ-x)-4…(1分)因為λ1=3方程f(λ)=0的一根,所以x=1…(3分)由(λ-1)(λ-1)-4=0得λ2=-1,…(5分)設λ2=-1對應的一個特征向量為α=xy,則-2x-2y=0-2x-2y=0得x=-y…(8分)令x=1則y=-1,所以矩陣M的另一個特征值為-1,對應的一個特征向量為α=1-1…(10分)5.設xi,yi
(i=1,2,…,n)是實數,且x1≥x2≥…≥xn,y1≥y2≥…≥yn,而z1,z2,…,zn是y1,y2,…,yn的一個排列.求證:n
i-1(xi-yi)2≥n
i-1(xi-zi)2.答案:證明:要證ni-1(xi-yi)2≥ni-1(xi-zi)2,只需證
ni=1
yi2-2ni=1
xi?yi≥ni=1
zi2-2ni=1
xi?zi,由于ni=1
yi2=ni=1
zi2,故只需證ni=1
xi?zi≤ni=1
xi?yi
①.而①的左邊為亂序和,右邊為順序和,根據排序不等式可得①成立,故要證的不等式成立.6.設M是□ABCD的對角線的交點,O為任意一點(且不與M重合),則OA+OB+OC+OD
等于()A.OMB.2OMC.3OMD.4OM答案:∵O為任意一點,不妨把A點O看成O點,則OA+OB+OC+OD=0+AB+AC
+AD,∵M是□ABCD的對角線的交點,∴0+AB+AC+AD=2AC=4AM故選D7.直線y=x-1的傾斜角是()
A.30°
B.120°
C.60°
D.150°答案:A8.一圓臺上底半徑為5cm,下底半徑為10cm,母線AB長為20cm,其中A在上底面上,B在下底面上,從AB中點M,拉一條繩子,繞圓臺的側面一周轉到B點,則這條繩子最短長為______cm.答案:畫出圓臺的側面展開圖,并還原成圓錐展開的扇形,且設扇形的圓心為O.有圖得:所求的最短距離是MB',設OA=R,圓心角是α,則由題意知,10π=αR
①,20π=α(20+R)
②,由①②解得,α=π2,R=20,∴OM=30,OB'=40,則MB'=50cm.故為:50cm.9.已知圓柱的軸截面周長為6,體積為V,則下列關系式總成立的是()A.V≥πB.V≤πC.V≥18πD.V≤18π答案:設圓柱的底面半徑為r,高為h,由題意得:4r+2h=6,即2r+h=3,∴體積為V=πr2h≤π[13(r+r+h)]2=π×(33)2=π當且僅當r=h時取等號,由此可得V≤π恒成立故選:B10.已知正方體ABCD-A1B1C1D1中,M、N分別為BB1、C1D1的中點,建立適當的坐標系,求平面AMN的法向量.答案:(-3,2,-4)為平面AMN的一個法向量.解析:以D為原點,DA、DC、DD1所在直線為坐標軸建立空間直角坐標系.(如圖所示).設棱長為1,則A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).設平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)為平面AMN的一個法向量.11.如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且
DF=CF=2,AF:FB:BE=4:2:1.若CE與圓相切,則CE的長為.答案:設AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7212.如圖是集合的知識結構圖,如果要加入“全集”,則應該放在()
A.“集合的概念”的下位
B.“集合的表示”的下位
C.“基本關系”的下位
D.“基本運算”的下位答案:D13.定義xn+1yn+1=1011xnyn為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標原點,n∈N*.已知OP1=(2,0),則OP2011的坐標為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標不變,縱坐標構成以0為首項,2為公差的等差數列∴OP2011的坐標為(2,4020)故為:(2,4020)14.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既不充分也不必要條件答案:若a>2且b>2,則必有a+b>4且ab>4成立,故充分性易證若a+b>4且ab>4,如a=8,b=1,此時a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上證明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要條件,故選A15.下列在曲線上的點是()
A.
B.
C.
D.答案:D16.已知:在△ABC中,AD為∠BAC的平分線,AD的垂直平分線EF與AD交于點E,與BC的延長線交于點F,若CF=4,BC=5,則DF=______.答案:連接FA,如下圖所示:∵EF垂直平分AD,∴FA=FD,∠FAD=∠FDA.即∠FAC+∠CAD=∠B+∠BAD.又∠CAD=∠BAD.故∠FAC=∠B;又∠AFC=∠BFA.∴△ABF∽△CAF.∴AF2=CF?BF=4?(4+5)=36∴DF=AF=6故為:617.已知空間三點的坐標為A(1,5,-2),B(2,4,1),C(p,3,q+2),若A,B,C三點共線,則p=______,q=______.答案:∵A(1,5,-2),B(2,4,1),C(p,3,q+2),∴AB=(1,-1,3),AC=(p-1,-2,q+4)∵A,B,C三點共線,∴AB=λAC∴(1,-1,3)=λ(p-1,-2,q+4),∴1=λ(p-1)-1=-2λ,3=λ(q+4),∴λ=12,p=3,q=2,故為:3;218.將直線y=x繞原點逆時針旋轉60°,所得直線的方程為()
A.y=-x
B.
C.y=-3x
D.答案:A19.按ABO血型系統學說,每個人的血型為A、B、O、AB型四種之一,依血型遺傳學,當且僅當父母中至少有一人的血型是AB型時,子女的血型一定不是O型,若某人的血型為O型,則其父母血型的所有可能情況有()
A.12種
B.6種
C.10種
D.9種答案:D20.已知a=5-12,則不等式logax>loga5的解集是______.答案:∵0<a<1,∴f(x)=logax在(0,+∞)上單調遞減∵logax>loga5∴0<x<5故為:(0,5)21.橢圓上有一點P,F1,F2是橢圓的左、右焦點,△F1PF2為直角三角形,則這樣的點P有()
A.3個
B.4個
C.6個
D.8個答案:C22.定義直線關于圓的圓心距單位λ為圓心到直線的距離與圓的半徑之比.若圓C滿足:①與x軸相切于點A(3,0);②直線y=x關于圓C的圓心距單位λ=2,試寫出一個滿足條件的圓C的方程______.答案:由題意可得圓心的橫坐標為3,設圓心的縱坐標為r,則半徑為|r|>0,則圓心的坐標為(3,r).設圓心到直線y=x的距離為d,d=|3-r|2,則由題意可得λ=d|r|=2,求得r=1,或r=-3,故一個滿足條件的圓C的方程是(x-3)2+(y-1)2=1,故為(x-3)2+(y-1)2=123.“a=18”是“對任意的正數x,2x+ax≥1的”()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當“a=18”時,由基本不等式可得:“對任意的正數x,2x+ax≥1”一定成立,即“a=18”?“對任意的正數x,2x+ax≥1”為真命題;而“對任意的正數x,2x+ax≥1的”時,可得“a≥18”即“對任意的正數x,2x+ax≥1”?“a=18”為假命題;故“a=18”是“對任意的正數x,2x+ax≥1的”充分不必要條件故選A24.滿足f(xy)=f(x)+f(y)(x>0,y>0)且f(3)=2的函數可以是f(x)=______.答案:若函數為對數函數,不妨令f(x)=logax則f(xy)=loga(xy)=logax+logay=f(x)+f(y)滿足條件又∵f(3)=2∴loga3=2解得a=3故f(x)=log3x故為:log3x25.用反證法證明命題“若a、b∈N,ab能被2整除,則a,b中至少有一個能被2整除”,那么反設的內容是______.答案:根據用反證法證明數學命題的步驟,應先假設要證命題的否定成立,而要證命題的否定為:“a,b都不能被2整除”,故為:a、b都不能被2整除.26.點P(1,2,2)到原點的距離是()
A.9
B.3
C.1
D.5答案:B27.已知某一隨機變量ξ的分布列如下,且Eξ=6.3,則a的值為()
ξ
4
a
9
P
0.5
0.1
b
A.5
B.6
C.7
D.8答案:C28.如圖,直線l1、l2、l3的斜率分別為k1、k2、k3,則必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:設直線l1、l2、l3的傾斜角分別為α1,α2,α3.由已知為α1為鈍角,α2>α3,且均為銳角.由于正切函數y=tanx在(0,π2)上單調遞增,且函數值為正,所以tanα2>tanα3>0,即k2>k3>0.當α為鈍角時,tanα為負,所以k1=tanα1<0.綜上k1<k3<k2,故選A.29.如圖,從圓O外一點A引切線AD和割線ABC,AB=3,BC=2,則切線AD的長為______.答案:由切割線定理可得AD2=AB?AC=3×5,∴AD=15.故為15.30.某飲料公司招聘了一名員工,現對其進行一項測試,以便確定工資級別.公司準備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為B飲料,公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料.若4杯都選對,則月工資定位3500元;若4杯選對3杯,則月工資定為2800元,否則月工資定為2100元,今X表示此人選對A飲料的杯數,假設此人對A和B兩種飲料沒有鑒別能力.
(1)求X的分布列;
(2)求此員工月工資的期望.答案:(1)X的所有可能取值為0,1,2,3,4,P(X=0)=1C48=170P(X=1)=C14C34C48=1670P(X=2)=C24C24C48=3670P(X=3)=C14C34C48=1670P(X=4)=1C48=170(2)此員工月工資Y的所有可能取值有3500、2800、2100,P(Y=3500)=P(X=4)=1C48=170P(Y=2800)=P(X=3)=C14C34C48=1670P(Y=2100)=P(X=0)+P(X=1)+P(X=2)=5370EY=3500×170+2800×1670+2100×5370=228031.命題“每一個素數都是奇數”的否定是______.答案:原命題“每一個素數都是奇數”是一個全稱命題它的否定是一個特稱命題,即“有的素數不是奇數”故為:有的素數不是奇數32.已知F是拋物線C:y2=4x的焦點,過F且斜率為1的直線交C于A,B兩點.設|FA|>|FB|,則|FA|與|FB|的比值等于______.答案:設A(x1,y1)B(x2,y2)由y=x-1y2=4x?x2-6x+1=0?x1=3+22,x2=3-22,(x1>x2)∴由拋物線的定義知|FA||FB|=x1+1x2+1=4+224-22=2+22-2=3+22故為:3+2233.在測量某物理量的過程中,因儀器和觀察的誤差,使得n次測量分別得到a1,a2,…,an,共n個數據.我們規定所測量的“量佳近似值”a是這樣一個量:與其他近似值比較,a與各數據的差的平方和最小.依此規定,從a1,a2,…,an推出的a=______.答案:∵所測量的“量佳近似值”a是與其他近似值比較,a與各數據的差的平方和最小.根據均值不等式求平方和的最小值知這些數的底數要盡可能的接近,∴a是所有數字的平均數,∴a=a1+a2+…+ann,故為:a1+a2+…+ann34.已知一物體在共點力F1=(lg2,lg2),F2=(lg5,lg2)的作用下產生位移S=(2lg5,1),則這兩個共點力對物體做的總功W為()A.1B.2C.lg2D.lg5答案:∵F1+F2=(lg2,lg2)+(lg5,lg2)=(1,2lg2)又∵在共點力的作用下產生位移S=(2lg5,1)∴這兩個共點力對物體做的總功W為(1,2lg2)?(2lg5,1)=2lg5+2lg2=2故選B35.某工廠生產的產品,用速度恒定的傳送帶將產品送入包裝車間之前,質檢員每隔3分鐘從傳送帶上是特定位置取一件產品進行檢測,這種抽樣方法是()
A.簡單隨機抽樣
B.系統抽樣
C.分層抽樣
D.其它抽樣方法答案:B36.設等比數列{an}的首項為a1,公比為q,則“a1<0且0<q<1”是“對于任意n∈N*都有an+1>an”的
()
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分又不必要條件答案:A37.若a2+b2+c2=1,則a+2b+3c的最大值為______.答案:因為已知a、b、c是實數,且a2+b2+c2=1根據柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(12+22+32)≥(a+2b+3c)2故(a+2b+3c)2≤14,即2a+b+2c≤14.即a+2b+3c的最大值為14.故為:14.38.將兩個數a=8,b=17交換,使a=17,b=8,下面語句正確一組是()
A.
B.
C.
D.
答案:B39.若向量a,b,c滿足a∥b且a⊥c,則c(a+2b)=______.答案:∵a∥b∴存在λ使b=λa∵a⊥c∴a?c=0∴c?(a+2b)=c?a+2c?b=2c?λa=0故為:0.40.直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關系是______.答案:直線(x+1)a+(y+1)b=0化為ax+by+(a+b)=0,所以圓心點到直線的距離d=|a+b|a2+b2=a2+b2+2aba2+b2≤2(a2+b2)a2+b2=2.所以直線(x+1)a+(y+1)b=0與圓x2+y2=2的位置關系是:相交或相切.故為:相交或相切.41.已知兩直線的方程分別為l1:x+ay+b=0,l2:x+cy+d=0,它們在坐標系中的位置如圖所示()
A.b>0,d<0,a<c
B.b>0,d<0,a>c
C.b<0,d>0,a<c
D.b<0,d>0,a>c
答案:D42.在極坐標系中,直線l經過圓ρ=cosθ的圓心且與直線ρcosθ=3平行,則直線l與極軸的交點的極坐標為______.答案:由ρ=cosθ可知此圓的圓心為(12,0),直線ρcosθ=3是與極軸垂直的直線,所以所求直線的極坐標方程為ρcosθ=12,所以直線l與極軸的交點的極坐標為(12,0).故為:(12,0).43.拋物線y2=4x的焦點坐標為()
A.(0,1)
B.(1,0)
C.(0,2)
D.(2,0)答案:B44.平面直角坐標系中,O為坐標原點,設向量其中,若且0≤μ≤λ≤1,那么C點所有可能的位置區域用陰影表示正確的是()
A.
B.
C.
D.
答案:A45.如圖在長方形ABCD中,AB=,BC=1,E為線段DC上一動點,現將△AED沿AE折起,使點D在面ABC上的射影K在直線AE上,當E從D運動到C,則K所形成軌跡的長度為()
A.
B.
C.
D.答案:B46.三棱錐P-ABC中,M為BC的中點,以為基底,則可表示為()
A.
B.
C.
D.答案:D47.已知兩點P(4,-9),Q(-2,3),則直線PQ與y軸的交點分有向線段PQ的比為______.答案:直線PQ與y軸的交點的橫坐標等于0,由定比分點坐標公式可得0=4+λ(-2)1+λ,解得λ=2,故直線PQ與y軸的交點分有向線段PQ的比為
λ=2,故為:2.48.有一個容量為66的樣本,數據的分組及各組的頻數如下:
[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18
[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3
根據樣本的頻率分布估計,大于或等于31.5的數據約占()A.211B.13C.12D.23答案:根據所給的數據的分組和各組的頻數知道,大于或等于31.5的數據有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,可以得到共有12+7+3=22,∵本組數據共有66個,∴大于或等于31.5的數據約占2266=13,故選B49.(x3+1xx)10的展開式中的第四項是______.答案:由二項式定理的通項公式可知(x3+1xx)10的展開式中的第四項是:C310(x3)7(1xx)3=120x16?x.故為:120x16?x.50.若把A、B、C、D、E、F、G七人排成一排,則A、B必須相鄰,且C、D不能相鄰的概率是______(結果用數值表示).答案:把AB看成一個整體,CD不能相鄰,就用插空法,則有A22A44A25種方法把A、B、C、D、E、F、G七人排成一排,隨便排的種數A77所以概率為A22A44A25A77=421故為:421.第3卷一.綜合題(共50題)1.若不等式(﹣1)na<2+對任意n∈N*恒成立,則實數a的取值范圍是
[
]A.[﹣2,)
B.(﹣2,)
C.[﹣3,)
D.(﹣3,)答案:A2.已知△ABC中,過重心G的直線交邊AB于P,交邊AC于Q,設AP=pPB,AQ=qQC,則pqp+q=()A.1B.3C.13D.2答案:取特殊直線PQ使其過重心G且平行于邊BC∵點G為重心∴APPB=AQQC=21∵AP=pPB,AQ=qQC∴p=2,q=2∴pqp+q=44=1故選項為A3.某校欲在一塊長、短半軸長分別為10米與8米的橢圓形土地中規劃一個矩形區域搞綠化,則在此橢圓形土地中可綠化的最大面積為()平方米.
A.80
B.160
C.320
D.160答案:B4.某次乒乓球比賽的決賽在甲乙兩名選手之間舉行,比賽采用五局三勝制,按以往比賽經驗,甲勝乙的概率為23.
(1)求比賽三局甲獲勝的概率;
(2)求甲獲勝的概率;
(3)設甲比賽的次數為X,求X的數學期望.答案:記甲n局獲勝的概率為Pn,n=3,4,5,(1)比賽三局甲獲勝的概率是:P3=C33(23)3=827;(2)比賽四局甲獲勝的概率是:P4=C23(23)3
(13)=827;比賽五局甲獲勝的概率是:P5=C24(13)2(23)3=1681;甲獲勝的概率是:P3+P4+P5=6481.(3)記乙n局獲勝的概率為Pn′,n=3,4,5.P3′=C33(13)3=127,P4′=C23(13)3
(23)=227;P5′=C24(13)3(23)2=881;故甲比賽次數的分布列為:X345P(X)P3+P3′P4+P4′P5+P5′所以甲比賽次數的數學期望是:EX=3(127+827)+4(827+227)+5(1681+881
)=10727.5.有50件產品編號從1到50,現在從中抽取抽取5件檢驗,用系統抽樣確定所抽取的編號為()
A.5,10,15,20,25
B.5,15,20,35,40
C.5,11,17,23,29
D.10,20,30,40,50答案:D6.已知O、A、M、B為平面上四點,且,則()
A.點M在線段AB上
B.點B在線段AM上
C.點A在線段BM上
D.O、A、M、B四點一定共線答案:B7.已知D是△ABC所在平面內一點,,則()
A.
B.
C.=
D.答案:A8.命題“當AB=AC時,△ABC是等腰三角形”與它的逆命題、否命題、逆否命題這四個命題中,真命題有______個.答案:原命題為真命題.逆命題“當△ABC是等腰三角形時,AB=AC”為假命題.否命題“當AB≠AC時,△ABC不是等腰三角形”為假命題.逆否命題“當△ABC不是等腰三角形時,AB≠AC”為真命題.故為:2.9.設集合A={1,2,3,4},集合B={1,3,5,7},則集合A∪B=()A.{1,3}B.{1,2,3,4,5,7}C.{5,7}D.{2,4,5,7}答案:∵A={1,2,3,4},B={1,3,5,7},∴A∪B={1,2,3,4,5,7},故選B.10.參數方程(θ為參數)化為普通方程是()
A.2x-y+4=0
B.2x+y-4=0
C.2x-y+4=0,x∈[2,3]
D.2x+y-4=0,x∈[2,3]答案:D11.經過點P(4,-2)的拋物線的標準方程為()
A.y2=-8x
B.x2=-8y
C.y2=x或x2=-8y
D.y2=x或y2=8x答案:C12.下列說法正確的是()
A.互斥事件一定是對立事件,對立事件不一定是互斥事件
B.互斥事件不一定是對立事件,對立事件一定是互斥事件
C.事件A,B中至少有一個發生的概率一定比A,B中恰有一個發生的概率大
D.事件A,B同時發生的概率一定比A,B中恰有一個發生的概率小答案:B13.已知邊長為1的正方形ABCD,則|AB+BC+CD|=______.答案:利用向量加法的幾何性質,得AB+BC=AC∴AB+BC+CD=AD因為正方形的邊長等于1所以|AB+BC+CD|=|AD|
=1故為:114.點(2a,a-1)在圓x2+y2-2y-4=0的內部,則a的取值范圍是()
A.-1<a<1
B.0<a<1
C.-1<a<
D.-<a<1答案:D15.(理)已知向量=(3,5,-1),=(2,2,3),=(4,-1,-3),則向量2-3+4的坐標為()
A.(16,0,-23)
B.(28,0,-23)
C.(16,-4,-1)
D.(0,0,9)答案:A16.已知正方體ABCD-A1B1C1D1,點E,F分別是上底面A1C1和側面CD1的中心,求下列各式中的x,y的值:
(1)AC1=x(AB+BC+CC1),則x=______;
(2)AE=AA1+xAB+yAD,則x=______,y=______;
(3)AF=AD+xAB+yAA1,則x=______,y=______.答案:(1)根據向量加法的首尾相連法則,x=1;(2)由向量加法的三角形法則得,AE=AA1+A1E,由四邊形法則和向量相等得,A1E=12(A1B1+A1D1)=12(AB+AD);∴AE=AA1+12AB+12AD,∴x=y=12;(3)由向量加法的三角形法則得,AF=AD+DF,由四邊形法則和向量相等得,DF=12(DC+DD1)=12(AB+AA1);∴AF=AD+12AB+12AA1,∴x=y=12.17.某企業甲、乙、丙三個生產車間的職工人數分別為120人,150人,180人,現用分層抽樣的方法抽出一個容量為n的樣本,樣本中甲車間有4人,那么此樣本的容量n=______.答案:每個個體被抽到的概率等于
4120=130,∴樣本容量n=(120+150+180)×130=15,故為:15.18.用反證法證明“a+b=1”時的反設為()
A.a+b>1且a+b<1
B.a+b>1
C.a+b>1或a+b<1
D.a+b<1答案:C19.設向量=(0,2),=,則,的夾角等于(
)
A.
B.
C.
D.答案:A20.平面向量與的夾角為60°,=(1,0),||=1,則|+2|=(
)
A.7
B.
C.4
D.12答案:B21.設集合A={(x,y)|x+y=6,x∈N,y∈N},使用列舉法表示集合A.答案:集合A中的元素是點,點的橫坐標,縱坐標都是自然數,且滿足條件x+y=6.所以用列舉法表示為:A={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.22.過點M(0,1)作直線,使它被兩直線l1:x-3y+10=0,l2:2x+y-8=0所截得的線段恰好被M所平分,求此直線方程.答案:設所求直線與已知直線l1,l2分別交于A、B兩點.∵點B在直線l2:2x+y-8=0上,故可設B(t,8-2t).又M(0,1)是AB的中點,由中點坐標公式得A(-t,2t-6).∵A點在直線l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直線方程為:x+4y-4=0.23.已知圓x2+y2=r2在曲線|x|+|y|=4的內部,則半徑r的范圍是()A.0<r<22B.0<r<2C.0<r<2D.0<r<4答案:根據題意畫出圖形,如圖所示:可得曲線|x|+|y|=4表示邊長為42的正方形,如圖ABCD為正方形,x2+y2=r2表示以原點為圓心的圓,過O作OE⊥AB,∵邊AB所在直線的方程為x+y=4,∴|OE|=42=22,則滿足題意的r的范圍是0<r<22.故選A24.(坐標系與參數方程選做題)在極坐標系(ρ,θ)(ρ>0,0≤θ<π2)中,曲線ρ=2sinθ與ρ=2cosθ的交點的極坐標為______.答案:兩式ρ=2sinθ與ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交點的極坐標為(2,π4).故為:(2,π4).25.設p,q是簡單命題,則“p且q為真”是“p或q為真”的()A.必要不充分條件B.充分不必要條件C.充要條件D.既不充分也不必要條件答案:若“p且q為真”成立,則p,q全真,所以“p或q為真”成立若“p或q為真”則p,q全真或真q假或p假q真,所以“p且q為真”不一定成立∴“p且q為真”是“p或q為真”的充分不必要條件故選B26.已知實數x、y滿足(x-2)2+y2+(x+2)2+y2=6,則2x+y的最大值等于______.答案:∵實數x、y滿足(x-2)2+y2+(x+2)2+y2=6,∴點(x,y)的軌跡是橢圓,其方程為x29+y25=1,所以可設x=3cosθ,y=5sinθ,則z=6cosθ+5sinθ=41sin(θ+
β)≤41,∴2x+y的最大值等于41.故為:4127.如果一個圓錐的正視圖是邊長為2的等邊三角形,則該圓錐的表面積是______.答案:由已知,圓錐的底面直徑為2,母線為2,則這個圓錐的表面積是12×2π×2+π?12=3π.故:3π.28.算法:第一步
x=a;第二步
若b>x則x=b;第三步
若c>x,則x=c;
第四步
若d>x,則x=d;
第五步
輸出x.則輸出的x表示()A.a,b,c,d中的最大值B.a,b,c,d中的最小值C.將a,b,c,d由小到大排序D.將a,b,c,d由大到小排序答案:x=a,若b>x,則b>a,x=b,否則x=a,即x為a,b中較大的值;若c>x,則x=c,否則x仍為a,b中較大的值,即x為a,b,c中較大的值;若d>x,則x=d,否則x仍為a,b,c中較大的值,即x為a,b,c中較大的值.故x為a,b,c,d中最大的數,故選A.29.已知方程(1+k)x2-(1-k)y2=1表示焦點在x軸上的雙曲線,則k的取值范圍為(
)
A.-1<k<1
B.k>1
C.k<-1
D.k>1或k<-1答案:A30.等腰三角形兩腰所在的直線方程是l1:7x-y-9=0,l2:x+y-7=0,它的底邊所在直線經過點A(3,-8),求底邊所在直線方程.答案:設l1,l2,底邊所在直線的斜率分別為k1,k2,k;由l1:7x-y-9=0得y=7x-9,所以k1=7,由l2:x+y-7=0得y=-x+7,所以k2=-1;…(2分)如圖,由等腰三角形性質,可知:l到l1的角=l2到l的角;由到角公式得:7-k1+7k=k-(-1)1+k(-1)…(4分)解出:k=-3或k=13…(6分)由已知:底邊經過點A(3,-8),代入點斜式,得出直線方程:y-(-8)=(-3)(x-3)或y-(-8)=13(x-3)…(7分)3x+y-1=0或x-3y-27=0.…(8分)31.用反證法證明:“方程ax2+bx+c=0,且a,b,c都是奇數,則方程沒有整數根”正確的假設是方程存在實數根x0為()
A.整數
B.奇數或偶數
C.正整數或負整數
D.自然數或負整數答案:A32.已知||=3,A、B分別在x軸和y軸上運動,O為原點,則動點P的軌跡方程是()
A.
B.
C.
D.答案:B33.已知四邊形ABCD中,AB=12DC,且|AD|=|BC|,則四邊形ABCD的形狀是______.答案:∵AB=12DC,∴AB∥DC,且|AB|=12|DC|,即線段AB平行于線段CD,且線段AB長度是線段CD長度的一半∴四邊形ABCD為以AB為上底、CD為下底的梯形,又∵|AD|=|BC|,∴梯形ABCD的兩腰相等,因此四邊形ABCD是等腰梯形.故為:等腰梯形34.5本不同的書全部分給3個學生,每人至少一本,共有()種分法.
A.60
B.150
C.300
D.210答案:B35.如圖是《集合》的知識結構圖,如果要加入“子集”,那么應該放在()
A.“集合”的下位
B.“含義與表示”的下位
C.“基本關系”的下位
D.“基本運算”的下位
答案:C36.氣象意義上從春季進入夏季的標志為:“連續5天的日平均溫度均不低于22
(℃)”.現有甲、乙、丙三地連續5天的日平均溫度的記錄數據(記錄數據都是正整數):
①甲地:5個數據的中位數為24,眾數為22;
②乙地:5個數據的中位數為27,總體均值為24;
③丙地:5個數據中有一個數據是32,總體均值為26,總體方差為10.8;
則肯定進入夏季的地區有()A.0個B.1個C.2個D.3個答案:①甲地:5個數據的中位數為24,眾數為22,根據數據得出:甲地連續5天的日平均溫度的記錄數據可能為:22,22,24,25,26.其連續5天的日平均溫度均不低于22.
②乙地:5個數據的中位數為27,總體均值為24.根據其總體均值為24可知其連續5天的日平均溫度均不低于22.③丙地:5個數據中有一個數據是32,總體均值為26,根據其總體均值為24可知其連續5天的日平均溫度均不低于22.則肯定進入夏季的地區有甲、乙、丙三地.故選D.37.袋中有4只紅球3只黑球,從袋中任取4只球,取到1只紅球得1分,取到1只黑球得3分,設得分為隨機變量ξ,則P(ξ≤6)=______.答案:取出的4只球中紅球個數可能為4,3,2,1個,黑球相應個數為0,1,2,3個.其分值為ξ=4,6,8.P(ξ≤6)=P(ξ=4)+P(ξ=6)=C44C03C47+C34C13C47=1335.故為:1335.38.下列有關相關指數R2的說法正確的有()
A.R2的值越大,說明殘差平方和越小
B.R2越接近1,表示回歸效果越差
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論