2022-2023學年浙江省溫州市八中中考數學全真模擬試卷含解析_第1頁
2022-2023學年浙江省溫州市八中中考數學全真模擬試卷含解析_第2頁
2022-2023學年浙江省溫州市八中中考數學全真模擬試卷含解析_第3頁
2022-2023學年浙江省溫州市八中中考數學全真模擬試卷含解析_第4頁
2022-2023學年浙江省溫州市八中中考數學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列所給的汽車標志圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.2.函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則m的值為()A.0 B.0或2 C.0或2或﹣2 D.2或﹣23.如果關于x的分式方程有負分數解,且關于x的不等式組的解集為x<-2,那么符合條件的所有整數a的積是()A.-3 B.0 C.3 D.94.甲隊修路120m與乙隊修路100m所用天數相同,已知甲隊比乙隊每天多修10m,設甲隊每天修路xm.依題意,下面所列方程正確的是A.B. C.D.5.在圍棋盒中有x顆白色棋子和y顆黑色棋子,從盒中隨機取出一顆棋子,取得白色棋子的概率是,如再往盒中放進3顆黑色棋子,取得白色棋子的概率變為,則原來盒里有白色棋子()A.1顆 B.2顆 C.3顆 D.4顆6.﹣2018的相反數是()A.﹣2018 B.2018 C.±2018 D.﹣7.如圖的幾何體中,主視圖是中心對稱圖形的是()A. B. C. D.8.下列運算正確的是()A.(a2)4=a6 B.a2?a3=a6 C. D.9.點P(4,﹣3)關于原點對稱的點所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限10.在六張卡片上分別寫有,π,1.5,5,0,六個數,從中任意抽取一張,卡片上的數為無理數的概率是()A. B. C. D.11.某公司第4月份投入1000萬元科研經費,計劃6月份投入科研經費比4月多500萬元.設該公司第5、6個月投放科研經費的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+500B.1000(1+x)2=500C.500(1+x)2=1000D.1000(1+2x)=1000+50012.下列圖形是由同樣大小的棋子按照一定規律排列而成的,其中,圖①中有5個棋子,圖②中有10個棋子,圖③中有16個棋子,…,則圖⑥________中有個棋子()A.31 B.35 C.40 D.50二、填空題:(本大題共6個小題,每小題4分,共24分.)13.用不等號“>”或“<”連接:sin50°_____cos50°.14.已知關于x的一元二次方程(k﹣5)x2﹣2x+2=0有實根,則k的取值范圍為_____.15.在一個不透明的口袋中,有3個紅球、2個黃球、一個白球,它們除顏色不同之外其它完全相同,現從口袋中隨機摸出一個球記下顏色后放回,再隨機摸出一個球,則兩次摸到一個紅球和一個黃球的概率是_____.16.如圖,在?ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,則DF=_____17.如圖,四邊形ABCD中,點P是對角線BD的中點,點E,F分別是AB,CD的中點,AD=BC,∠PEF=35°,則∠PFE的度數是_____.18.如圖①,四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點出發,以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運動,設P點的運動時間為t秒,△PAD的面積為S,S關于t的函數圖象如圖②所示,當P運動到BC中點時,△PAD的面積為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是⊙O的直徑,點C為⊙O上一點,CN為⊙O的切線,OM⊥AB于點O,分別交AC、CN于D、M兩點.求證:MD=MC;若⊙O的半徑為5,AC=4,求MC的長.20.(6分)如圖,在?ABCD中,以點A為圓心,AB的長為半徑的圓恰好與CD相切于點C,交AD于點E,延長BA與⊙O相交于點F.若的長為,則圖中陰影部分的面積為_____.21.(6分)“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時,以高出進價的50%標價.已知按標價九折銷售該型號自行車8輛與將標價直降100元銷售7輛獲利相同.求該型號自行車的進價和標價分別是多少元?若該型號自行車的進價不變,按(1)中的標價出售,該店平均每月可售出51輛;若每輛自行車每降價20元,每月可多售出3輛,求該型號自行車降價多少元時,每月獲利最大?最大利潤是多少?22.(8分)已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數學興趣小組的同學在斜坡底P處測得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測得該塔的塔頂B的仰角為76°.求:坡頂A到地面PO的距離;古塔BC的高度(結果精確到1米).23.(8分)為鼓勵大學畢業生自主創業,某市政府出臺了相關政策:由政府協調,本市企業按成本價提供產品給大學畢業生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產的一種新型節能燈.已知這種節能燈的成本價為每件元,出廠價為每件元,每月銷售量(件)與銷售單價(元)之間的關系近似滿足一次函數:.李明在開始創業的第一個月將銷售單價定為元,那么政府這個月為他承擔的總差價為多少元?設李明獲得的利潤為(元),當銷售單價定為多少元時,每月可獲得最大利潤?物價部門規定,這種節能燈的銷售單價不得高于元.如果李明想要每月獲得的利潤不低于元,那么政府為他承擔的總差價最少為多少元?24.(10分)解不等式組,請結合題意填空,完成本題的解答.(1)解不等式①,得_____;(2)解不等式②,得_____;(3)把不等式①和②的解集在數軸上表示出來;(4)原不等式組的解集為_____.25.(10分)計算:÷–+2018026.(12分)石獅泰禾某童裝專賣店在銷售中發現,一款童裝每件進價為80元,銷售價為120元時,每天可售出20件,為了迎接“十一”國慶節,商店決定采取適當的降價措施,以擴大銷售量,增加利潤,經市場調查發現,如果每件童裝降價1元,那么平均可多售出2件.設每件童裝降價x元時,每天可銷售______件,每件盈利______元;(用x的代數式表示)每件童裝降價多少元時,平均每天贏利1200元.要想平均每天贏利2000元,可能嗎?請說明理由.27.(12分)如圖,∠AOB=90°,反比例函數y=﹣(x<0)的圖象過點A(﹣1,a),反比例函數y=(k>0,x>0)的圖象過點B,且AB∥x軸.(1)求a和k的值;(2)過點B作MN∥OA,交x軸于點M,交y軸于點N,交雙曲線y=于另一點C,求△OBC的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】分析:根據軸對稱圖形與中心對稱圖形的概念求解即可.詳解:A.是軸對稱圖形,不是中心對稱圖形;B.是軸對稱圖形,也是中心對稱圖形;C.是軸對稱圖形,不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.點睛:本題考查了中心對稱圖形和軸對稱圖形的知識,關鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖重合.2、C【解析】

根據函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,利用分類討論的方法可以求得m的值,本題得以解決.【詳解】解:∵函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,∴當m=0時,y=2x+1,此時y=0時,x=﹣0.5,該函數與x軸有一個交點,當m≠0時,函數y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值為0或2或﹣2,故選:C.【點睛】本題考查拋物線與x軸的交點,解答本題的關鍵是明確題意,利用分類討論的數學思想解答.3、D【解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式組的解集為x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合題意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合題意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合題意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合題意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合題意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合題意;把a=3代入整式方程得:﹣3x=1﹣x,即,符合題意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合題意,∴符合條件的整數a取值為﹣3;﹣1;1;3,之積為1.故選D.4、A【解析】分析:甲隊每天修路xm,則乙隊每天修(x-10)m,因為甲、乙兩隊所用的天數相同,所以,。故選A。5、B【解析】試題解析:由題意得,解得:.故選B.6、B【解析】分析:只有符號不同的兩個數叫做互為相反數.詳解:-1的相反數是1.故選:B.點睛:本題主要考查的是相反數的定義,掌握相反數的定義是解題的關鍵.7、C【解析】解:球是主視圖是圓,圓是中心對稱圖形,故選C.8、C【解析】

根據冪的乘方、同底數冪的乘法、二次根式的乘法、二次根式的加法計算即可.【詳解】A、原式=a8,所以A選項錯誤;B、原式=a5,所以B選項錯誤;C、原式=,所以C選項正確;D、與不能合并,所以D選項錯誤.故選:C.【點睛】本題考查了冪的乘方、同底數冪的乘法、二次根式的乘法、二次根式的加法,熟練掌握它們的運算法則是解答本題的關鍵.9、C【解析】

由題意得點P的坐標為(﹣4,3),根據象限內點的符號特點可得點P1的所在象限.【詳解】∵設P(4,﹣3)關于原點的對稱點是點P1,∴點P1的坐標為(﹣4,3),∴點P1在第二象限.故選C【點睛】本題主要考查了兩點關于原點對稱,這兩點的橫縱坐標均互為相反數;符號為(﹣,+)的點在第二象限.10、B【解析】

無限不循環小數叫無理數,無理數通常有以下三種形式:一是開方開不盡的數,二是圓周率π,三是構造的一些不循環的數,如1.010010001……(兩個1之間0的個數一次多一個).然后用無理數的個數除以所有書的個數,即可求出從中任意抽取一張,卡片上的數為無理數的概率.【詳解】∵這組數中無理數有,共2個,∴卡片上的數為無理數的概率是.故選B.【點睛】本題考查了無理數的定義及概率的計算.11、A【解析】

設該公司第5、6個月投放科研經費的月平均增長率為x,5月份投放科研經費為1000(1+x),6月份投放科研經費為1000(1+x)(1+x),即可得答案.【詳解】設該公司第5、6個月投放科研經費的月平均增長率為x,則6月份投放科研經費1000(1+x)2=1000+500,故選A.【點睛】考查一元二次方程的應用,求平均變化率的方法為:若設變化前的量為a,變化后的量為b,平均變化率為x,則經過兩次變化后的數量關系為a(1±x)2=b.12、C【解析】

根據題意得出第n個圖形中棋子數為1+2+3+…+n+1+2n,據此可得.【詳解】解:∵圖1中棋子有5=1+2+1×2個,圖2中棋子有10=1+2+3+2×2個,圖3中棋子有16=1+2+3+4+3×2個,…∴圖6中棋子有1+2+3+4+5+6+7+6×2=40個,故選C.【點睛】本題考查了圖形的變化規律,通過從一些特殊的圖形變化中發現不變的因素或按規律變化的因素,然后推廣到一般情況.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、>【解析】試題解析:∵cos50°=sin40°,sin50°>sin40°,∴sin50°>cos50°.故答案為>.點睛:當角度在0°~90°間變化時,①正弦值隨著角度的增大(或減?。┒龃螅ɑ驕p?。虎谟嘞抑惦S著角度的增大(或減?。┒鴾p小(或增大);③正切值隨著角度的增大(或減?。┒龃螅ɑ驕p小).14、【解析】

若一元二次方程有實根,則根的判別式△=b2-4ac≥0,且k-1≠0,建立關于k的不等式組,求出k的取值范圍.【詳解】解:∵方程有兩個實數根,∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,解得:k≤且k≠1,故答案為k≤且k≠1.【點睛】此題考查根的判別式問題,總結:一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(3)△<0?方程沒有實數根.15、【解析】

先畫樹狀圖展示所有36種等可能的結果數,再找出兩次摸到一個紅球和一個黃球的結果數,然后根據概率公式求解.【詳解】畫樹狀圖如下:由樹狀圖可知,共有36種等可能結果,其中兩次摸到一個紅球和一個黃球的結果數為12,所以兩次摸到一個紅球和一個黃球的概率為,故答案為.【點睛】本題考查了列表法或樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結果求出n,再從中選出符合事件A或B的結果數目m,然后根據概率公式求出事件A或B的概率.16、.【解析】

解:令AE=4x,BE=3x,∴AB=7x.∵四邊形ABCD為平行四邊形,∴CD=AB=7x,CD∥AB,∴△BEF∽△DCF.∴,∴DF=【點睛】本題考查平行四邊形的性質及相似三角形的判定與性質,掌握定理正確推理論證是本題的解題關鍵.17、35°【解析】∵四邊形ABCD中,點P是對角線BD的中點,點E,F分別是AB,CD的中點,∴PE是△ABD的中位線,PF是△BDC的中位線,∴PE=AD,PF=BC,又∵AD=BC,∴PE=PF,∴∠PFE=∠PEF=35°.故答案為35°.18、1【解析】解:由圖象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根據題意可知,當P點運動到C點時,△PAD的面積最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴當P點運動到BC中點時,△PAD的面積=×(AB+CD)×AD=1,故答案為1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)MC=.【解析】【分析】(1)連接OC,利用切線的性質證明即可;(2)根據相似三角形的判定和性質以及勾股定理解答即可.【詳解】(1)連接OC,∵CN為⊙O的切線,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由題意可知AB=5×2=10,AC=4,∵AB是⊙O的直徑,∴∠ACB=90°,∴BC==2,∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴,即,可得:OD=2.5,設MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=.【點睛】本題考查了切線的判定和性質、相似三角形的判定和性質、勾股定理等知識,準確添加輔助線,正確尋找相似三角形是解決問題的關鍵.20、S陰影=2﹣.【解析】

由切線的性質和平行四邊形的性質得到BA⊥AC,∠ACB=∠B=45°,∠DAC=∠ACB=45°=∠FAE,根據弧長公式求出弧長,得到半徑,即可求出結果.【詳解】如圖,連接AC,∵CD與⊙A相切,∴CD⊥AC,在平行四邊形ABCD中,∵AB=DC,AB∥CD∥BC,∴BA⊥AC,∵AB=AC,∴∠ACB=∠B=45°,∵AD∥BC,∴∠FAE=∠B=45°,∴∠DAC=∠ACB=45°=∠FAE,∴∴的長度為解得R=2,S陰=S△ACD-S扇形=【點睛】此題主要考查圓內的面積計算,解題的關鍵是熟知平行四邊形的性質、切線的性質、弧長計算及扇形面積的計算.21、(1)進價為1000元,標價為1500元;(2)該型號自行車降價80元出售每月獲利最大,最大利潤是26460元.【解析】分析:(1)設進價為x元,則標價是1.5x元,根據關鍵語句:按標價九折銷售該型號自行車8輛的利潤是1.5x×0.9×8-8x,將標價直降100元銷售7輛獲利是(1.5x-100)×7-7x,根據利潤相等可得方程1.5x×0.9×8-8x=(1.5x-100)×7-7x,再解方程即可得到進價,進而得到標價;(2)設該型號自行車降價a元,利潤為w元,利用銷售量×每輛自行車的利潤=總利潤列出函數關系式,再利用配方法求最值即可.詳解:(1)設進價為x元,則標價是1.5x元,由題意得:1.5x×0.9×8-8x=(1.5x-100)×7-7x,解得:x=1000,1.5×1000=1500(元),答:進價為1000元,標價為1500元;(2)設該型號自行車降價a元,利潤為w元,由題意得:w=(51+×3)(1500-1000-a),=-(a-80)2+26460,∵-<0,∴當a=80時,w最大=26460,答:該型號自行車降價80元出售每月獲利最大,最大利潤是26460元.點睛:此題主要考查了二次函數的應用,以及元一次方程的應用,關鍵是正確理解題意,根據已知得出w與a的關系式,進而求出最值.22、(1)坡頂到地面的距離為米;移動信號發射塔的高度約為米.【解析】

延長BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由題意BH=PH.設BC=x.則x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根據tan76°=,構建方程求出x即可.【詳解】延長BC交OP于H.∵斜坡AP的坡度為1:2.4,∴,設AD=5k,則PD=12k,由勾股定理,得AP=13k,∴13k=26,解得k=2,∴AD=10,∵BC⊥AC,AC∥PO,∴BH⊥PO,∴四邊形ADHC是矩形,CH=AD=10,AC=DH,∵∠BPD=45°,∴PH=BH,設BC=x,則x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=,即≈4.1.解得:x≈18.7,經檢驗x≈18.7是原方程的解.答:古塔BC的高度約為18.7米.【點睛】本題主要考查了解直角三角形,用到的知識點是勾股定理,銳角三角函數,坡角與坡角等,解決本題的關鍵是作出輔助線,構造直角三角形.23、(1)政府這個月為他承擔的總差價為644元;(2)當銷售單價定為34元時,每月可獲得最大利潤144元;(3)銷售單價定為25元時,政府每個月為他承擔的總差價最少為544元.【解析】試題分析:(1)把x=24代入y=﹣14x+544求出銷售的件數,然后求出政府承擔的成本價與出廠價之間的差價;(2)由利潤=銷售價﹣成本價,得w=(x﹣14)(﹣14x+544),把函數轉化成頂點坐標式,根據二次函數的性質求出最大利潤;(3)令﹣14x2+644x﹣5444=2,求出x的值,結合圖象求出利潤的范圍,然后設設政府每個月為他承擔的總差價為p元,根據一次函數的性質求出總差價的最小值.試題解析:(1)當x=24時,y=﹣14x+544=﹣14×24+544=344,344×(12﹣14)=344×2=644元,即政府這個月為他承擔的總差價為644元;(2)依題意得,w=(x﹣14)(﹣14x+544)=﹣14x2+644x﹣5444=﹣14(x﹣34)2+144∵a=﹣14<4,∴當x=34時,w有最大值144元.即當銷售單價定為34元時,每月可獲得最大利潤144元;(3)由題意得:﹣14x2+644x﹣5444=2,解得:x1=24,x2=1.∵a=﹣14<4,拋物線開口向下,∴結合圖象可知:當24≤x≤1時,w≥2.又∵x≤25,∴當24≤x≤25時,w≥2.設政府每個月為他承擔的總差價為p元,∴p=(12﹣14)×(﹣14x+544)=﹣24x+3.∵k=﹣24<4.∴p隨x的增大而減小,∴當x=25時,p有最小值544元.即銷售單價定為25元時,政府每個月為他承擔的總差價最少為544元.考點:二次函數的應用.24、(1)x>1;(1)x≤1;(3)答案見解析;(4)1<x≤1.【解析】

根據一元一次不等式的解法分別解出兩個不等式,根據不等式的解集的確定方法得到不等式組的解集.【詳解】解:(1)解不等式①,得x>1;(1)解不等式②,得x≤1;(3)把不等式①和②的解集在數軸上表示出來:(4)原不等式組的解集為:1<x≤1.【點睛】本題考查了一元一次不等式組的解法,掌握確定解集的規律:同大取大;同小取小;大小小大中間找;大大小小找不到是解題的關鍵.25、2【解析】

根據實數的混合運算法則進行計算.【詳解】解:原式=-(-1)+1=-+1+1=2【點睛】此題重點考察學生對實數的混合運算的應用,熟練掌握計算方法是解題的關鍵.26、(1)(20+2x),(40﹣x);(2)每件童裝降價2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論