2023學年山東省濟寧市嘉祥中考數學模擬精編試卷含解析及點睛_第1頁
2023學年山東省濟寧市嘉祥中考數學模擬精編試卷含解析及點睛_第2頁
2023學年山東省濟寧市嘉祥中考數學模擬精編試卷含解析及點睛_第3頁
2023學年山東省濟寧市嘉祥中考數學模擬精編試卷含解析及點睛_第4頁
2023學年山東省濟寧市嘉祥中考數學模擬精編試卷含解析及點睛_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(-1,0),其部分圖象如圖所示,下列結論:①4ac<b2;②方程ax2+bx+c=0的兩個根是x1=-1,x2=3;③3a+c>0;④當y>0時,x的取值范圍是-1≤x<3;⑤當x<0時,y隨x增大而增大.其中結論正確的個數是()A.4個 B.3個 C.2個 D.1個2.若函數y=kx﹣b的圖象如圖所示,則關于x的不等式k(x﹣3)﹣b>0的解集為()A.x<2 B.x>2 C.x<5 D.x>53.已知關于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數根,下列判斷正確的是()A.1一定不是關于x的方程x2+bx+a=0的根B.0一定不是關于x的方程x2+bx+a=0的根C.1和﹣1都是關于x的方程x2+bx+a=0的根D.1和﹣1不都是關于x的方程x2+bx+a=0的根4.下列四個幾何體中,左視圖為圓的是()A. B. C. D.5.小紅上學要經過兩個十字路口,每個路口遇到紅、綠燈的機會都相同,小紅希望上學時經過每個路口都是綠燈,但實際這樣的機會是()A. B. C. D.6.的化簡結果為A.3 B. C. D.97.直線AB、CD相交于點O,射線OM平分∠AOD,點P在射線OM上(點P與點O不重合),如果以點P為圓心的圓與直線AB相離,那么圓P與直線CD的位置關系是()A.相離 B.相切 C.相交 D.不確定8.如圖,在半徑為5的⊙O中,弦AB=6,點C是優弧上一點(不與A,B重合),則cosC的值為()A. B. C. D.9.一元二次方程(x+3)(x-7)=0的兩個根是A.x1=3,x2=-7B.x1=3,x2=7C.x1=-3,x2=7D.x1=-3,x2=-710.某種商品每件的標價是270元,按標價的八折銷售時,仍可獲利20%,則這種商品每件的進價為()A.180元 B.200元 C.225元 D.259.2元二、填空題(本大題共6個小題,每小題3分,共18分)11.若,,則代數式的值為__________.12.如圖,△ABC內接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點D,若☉O的半徑為2,則CD的長為_____13.已知AB=AC,tanA=2,BC=5,則△ABC的面積為_______________.14.計算:2﹣1+=_____.15.如圖,A、B是雙曲線y=上的兩點,過A點作AC⊥x軸,交OB于D點,垂足為C.若D為OB的中點,△ADO的面積為3,則k的值為_____.16.將一次函數的圖象平移,使其經過點(2,3),則所得直線的函數解析式是______.三、解答題(共8題,共72分)17.(8分)如圖,已知拋物線經過,兩點,頂點為.(1)求拋物線的解析式;(2)將繞點順時針旋轉后,點落在點的位置,將拋物線沿軸平移后經過點,求平移后所得圖象的函數關系式;(3)設(2)中平移后,所得拋物線與軸的交點為,頂點為,若點在平移后的拋物線上,且滿足的面積是面積的2倍,求點的坐標.18.(8分)在平面直角坐標系中,已知直線y=﹣x+4和點M(3,2)(1)判斷點M是否在直線y=﹣x+4上,并說明理由;(2)將直線y=﹣x+4沿y軸平移,當它經過M關于坐標軸的對稱點時,求平移的距離;(3)另一條直線y=kx+b經過點M且與直線y=﹣x+4交點的橫坐標為n,當y=kx+b隨x的增大而增大時,則n取值范圍是_____.19.(8分)解方程:3x2﹣2x﹣2=1.20.(8分)如圖,⊙O的直徑AD長為6,AB是弦,CD∥AB,∠A=30°,且CD=.(1)求∠C的度數;(2)求證:BC是⊙O的切線.21.(8分)撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A,B,C,D四個等級.請根據兩幅統計圖中的信息回答下列問題:(1)本次抽樣調查共抽取了多少名學生?(2)求測試結果為C等級的學生數,并補全條形圖;(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名?(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.22.(10分)如圖,∠AOB=45°,點M,N在邊OA上,點P是邊OB上的點.(1)利用直尺和圓規在圖1確定點P,使得PM=PN;(2)設OM=x,ON=x+4,①若x=0時,使P、M、N構成等腰三角形的點P有個;②若使P、M、N構成等腰三角形的點P恰好有三個,則x的值是____________.23.(12分)計算:1224.據調查,超速行駛是引發交通事故的主要原因之一.小強用所學知識對一條筆直公路上的車輛進行測速,如圖所示,觀測點C到公路的距離CD=200m,檢測路段的起點A位于點C的南偏東60°方向上,終點B位于點C的南偏東45°方向上.一輛轎車由東向西勻速行駛,測得此車由A處行駛到B處的時間為10s.問此車是否超過了該路段16m/s的限制速度?(觀測點C離地面的距離忽略不計,參考數據:≈1.41,≈1.73)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

解:∵拋物線與x軸有2個交點,∴b2﹣4ac>0,所以①正確;∵拋物線的對稱軸為直線x=1,而點(﹣1,0)關于直線x=1的對稱點的坐標為(3,0),∴方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3,所以②正確;∵x=﹣=1,即b=﹣2a,而x=﹣1時,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③錯誤;∵拋物線與x軸的兩點坐標為(﹣1,0),(3,0),∴當﹣1<x<3時,y>0,所以④錯誤;∵拋物線的對稱軸為直線x=1,∴當x<1時,y隨x增大而增大,所以⑤正確.故選:B.【點睛】本題考查了二次函數圖象與系數的關系:對于二次函數y=ax2+bx+c(a≠0),二次項系數a決定拋物線的開口方向和大小:當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c);拋物線與x軸交點個數由△決定:△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.2、C【解析】

根據函數圖象知:一次函數過點(2,0);將此點坐標代入一次函數的解析式中,可求出k、b的關系式;然后將k、b的關系式代入k(x﹣3)﹣b>0中進行求解即可.【詳解】解:∵一次函數y=kx﹣b經過點(2,0),∴2k﹣b=0,b=2k.函數值y隨x的增大而減小,則k<0;解關于k(x﹣3)﹣b>0,移項得:kx>3k+b,即kx>1k;兩邊同時除以k,因為k<0,因而解集是x<1.故選C.【點睛】本題考查一次函數與一元一次不等式.3、D【解析】

根據方程有兩個相等的實數根可得出b=a+1或b=-(a+1),當b=a+1時,-1是方程x2+bx+a=0的根;當b=-(a+1)時,1是方程x2+bx+a=0的根.再結合a+1≠-(a+1),可得出1和-1不都是關于x的方程x2+bx+a=0的根.【詳解】∵關于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數根,∴,∴b=a+1或b=-(a+1).當b=a+1時,有a-b+1=0,此時-1是方程x2+bx+a=0的根;當b=-(a+1)時,有a+b+1=0,此時1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是關于x的方程x2+bx+a=0的根.故選D.【點睛】本題考查了根的判別式以及一元二次方程的定義,牢記“當△=0時,方程有兩個相等的實數根”是解題的關鍵.4、A【解析】

根據三視圖的法則可得出答案.【詳解】解:左視圖為從左往右看得到的視圖,A.球的左視圖是圓,B.圓柱的左視圖是長方形,C.圓錐的左視圖是等腰三角形,D.圓臺的左視圖是等腰梯形,故符合題意的選項是A.【點睛】錯因分析較容易題.失分原因是不會判斷常見幾何體的三視圖.5、C【解析】

列舉出所有情況,看每個路口都是綠燈的情況數占總情況數的多少即可得.【詳解】畫樹狀圖如下,共4種情況,有1種情況每個路口都是綠燈,所以概率為.故選C.6、A【解析】試題分析:根據二次根式的計算化簡可得:.故選A.考點:二次根式的化簡7、A【解析】

根據角平分線的性質和點與直線的位置關系解答即可.【詳解】解:如圖所示;∵OM平分∠AOD,以點P為圓心的圓與直線AB相離,∴以點P為圓心的圓與直線CD相離,故選:A.【點睛】此題考查直線與圓的位置關系,關鍵是根據角平分線的性質解答.8、D【解析】解:作直徑AD,連結BD,如圖.∵AD為直徑,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故選D.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了解直角三角形.9、C【解析】

根據因式分解法直接求解即可得.【詳解】∵(x+3)(x﹣7)=0,∴x+3=0或x﹣7=0,∴x1=﹣3,x2=7,故選C.【點睛】本題考查了解一元二次方程——因式分解法,根據方程的特點選擇恰當的方法進行求解是解題的關鍵.10、A【解析】

設這種商品每件進價為x元,根據題中的等量關系列方程求解.【詳解】設這種商品每件進價為x元,則根據題意可列方程270×0.8-x=0.2x,解得x=180.故選A.【點睛】本題主要考查一元一次方程的應用,解題的關鍵是確定未知數,根據題中的等量關系列出正確的方程.二、填空題(本大題共6個小題,每小題3分,共18分)11、-12【解析】分析:對所求代數式進行因式分解,把,,代入即可求解.詳解:,,,故答案為:點睛:考查代數式的求值,掌握提取公因式法和公式法進行因式分解是解題的關鍵.12、【解析】

連接OA,OC,根據∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【點睛】本題考查了圓周角定理以及銳角三角函數,根據題意作出常用輔助線是解題關鍵.13、【解析】

作CD⊥AB,由tanA=2,設AD=x,CD=2x,根據勾股定理AC=x,則BD=,然后在Rt△CBD中BC2=BD2+CD2,即52=4x2+,解得x2=,則S△ABC===【詳解】如圖作CD⊥AB,∵tanA=2,設AD=x,CD=2x,∴AC=x,∴BD=,在Rt△CBD中BC2=BD2+CD2,即52=4x2+,x2=,∴S△ABC===【點睛】此題主要考查三角函數的應用,解題的關鍵是根據題意作出輔助線進行求解.14、【解析】根據負整指數冪的性質和二次根式的性質,可知=.故答案為.15、1.【解析】過點B作BE⊥x軸于點E,根據D為OB的中點可知CD是△OBE的中位線,即CD=BE,設A(x,),則B(2x,),故CD=,AD=﹣,再由△ADO的面積為1求出k的值即可得出結論.解:如圖所示,過點B作BE⊥x軸于點E,∵D為OB的中點,∴CD是△OBE的中位線,即CD=BE.設A(x,),則B(2x,),CD=,AD=﹣,∵△ADO的面積為1,∴AD?OC=3,(﹣)?x=3,解得k=1,故答案為1.16、【解析】試題分析:解:設y=x+b,∴3=2+b,解得:b=1.∴函數解析式為:y=x+1.故答案為y=x+1.考點:一次函數點評:本題要注意利用一次函數的特點,求出未知數的值從而求得其解析式,求直線平移后的解析式時要注意平移時k的值不變.三、解答題(共8題,共72分)17、(1)拋物線的解析式為.(2)平移后的拋物線解析式為:.(3)點的坐標為或.【解析】分析:(1)利用待定系數法,將點A,B的坐標代入解析式即可求得;(2)根據旋轉的知識可得:A(1,0),B(0,2),∴OA=1,OB=2,可得旋轉后C點的坐標為(3,1),當x=3時,由y=x2-3x+2得y=2,可知拋物線y=x2-3x+2過點(3,2)∴將原拋物線沿y軸向下平移1個單位后過點C.∴平移后的拋物線解析式為:y=x2-3x+1;(3)首先求得B1,D1的坐標,根據圖形分別求得即可,要注意利用方程思想.詳解:(1)已知拋物線經過,,∴,解得,∴所求拋物線的解析式為.(2)∵,,∴,,可得旋轉后點的坐標為.當時,由得,可知拋物線過點.∴將原拋物線沿軸向下平移1個單位長度后過點.∴平移后的拋物線解析式為:.(3)∵點在上,可設點坐標為,將配方得,∴其對稱軸為.由題得B1(0,1).①當時,如圖①,∵,∴,∴,此時,∴點的坐標為.②當時,如圖②,同理可得,∴,此時,∴點的坐標為.綜上,點的坐標為或.點睛:此題屬于中考中的壓軸題,難度較大,知識點考查的較多而且聯系密切,需要學生認真審題.此題考查了二次函數與一次函數的綜合知識,解題的關鍵是要注意數形結合思想的應用.18、(1)點M(1,2)不在直線y=﹣x+4上,理由見解析;(2)平移的距離為1或2;(1)2<n<1.【解析】

(1)將x=1代入y=-x+4,求出y=-1+4=1≠2,即可判斷點M(1,2)不在直線y=-x+4上;(2)設直線y=-x+4沿y軸平移后的解析式為y=-x+4+b.分兩種情況進行討論:①點M(1,2)關于x軸的對稱點為點M1(1,-2);②點M(1,2)關于y軸的對稱點為點M2(-1,2).分別求出b的值,得到平移的距離;(1)由直線y=kx+b經過點M(1,2),得到b=2-1k.由直線y=kx+b與直線y=-x+4交點的橫坐標為n,得出y=kn+b=-n+4,k=.根據y=kx+b隨x的增大而增大,得到k>0,即>0,那么①,或②,分別解不等式組即可求出n的取值范圍.【詳解】(1)點M不在直線y=﹣x+4上,理由如下:∵當x=1時,y=﹣1+4=1≠2,∴點M(1,2)不在直線y=﹣x+4上;(2)設直線y=﹣x+4沿y軸平移后的解析式為y=﹣x+4+b.①點M(1,2)關于x軸的對稱點為點M1(1,﹣2),∵點M1(1,﹣2)在直線y=﹣x+4+b上,∴﹣2=﹣1+4+b,∴b=﹣1,即平移的距離為1;②點M(1,2)關于y軸的對稱點為點M2(﹣1,2),∵點M2(﹣1,2)在直線y=﹣x+4+b上,∴2=1+4+b,∴b=﹣2,即平移的距離為2.綜上所述,平移的距離為1或2;(1)∵直線y=kx+b經過點M(1,2),∴2=1k+b,b=2﹣1k.∵直線y=kx+b與直線y=﹣x+4交點的橫坐標為n,∴y=kn+b=﹣n+4,∴kn+2﹣1k=﹣n+4,∴k=.∵y=kx+b隨x的增大而增大,∴k>0,即>0,∴①,或②,不等式組①無解,不等式組②的解集為2<n<1.∴n的取值范圍是2<n<1.故答案為2<n<1.【點睛】本題考查了一次函數圖象與幾何變換,一次函數圖象上點的坐標特征,一次函數的性質,解一元一次不等式組,都是基礎知識,需熟練掌握.19、【解析】

先找出a,b,c,再求出b2-4ac=28,根據公式即可求出答案.【詳解】解:x==即∴原方程的解為.【點睛】本題考查對解一元二次方程-提公因式法、公式法,因式分解法等知識點的理解和掌握,能熟練地運用公式法解一元二次方程是解此題的關鍵.20、(1)60°;(2)見解析【解析】

(1)連接BD,由AD為圓的直徑,得到∠ABD為直角,再利用30度角所對的直角邊等于斜邊的一半求出BD的長,根據CD與AB平行,得到一對內錯角相等,確定出∠CDB為直角,在直角三角形BCD中,利用銳角三角函數定義求出tanC的值,即可確定出∠C的度數;(2)連接OB,由OA=OB,利用等邊對等角得到一對角相等,再由CD與AB平行,得到一對同旁內角互補,求出∠ABC度數,由∠ABC﹣∠ABO度數確定出∠OBC度數為90,即可得證;【詳解】(1)如圖,連接BD,∵AD為圓O的直徑,∴∠ABD=90°,∴BD=AD=3,∵CD∥AB,∠ABD=90°,∴∠CDB=∠ABD=90°,在Rt△CDB中,tanC=,∴∠C=60°;(2)連接OB,∵∠A=30°,OA=OB,∴∠OBA=∠A=30°,∵CD∥AB,∠C=60°,∴∠ABC=180°﹣∠C=120°,∴∠OBC=∠ABC﹣∠ABO=120°﹣30°=90°,∴OB⊥BC,∴BC為圓O的切線.【點睛】此題考查了切線的判定,熟練掌握性質及定理是解本題的關鍵.21、(1)50;(2)16;(3)56(4)見解析【解析】

(1)用A等級的頻數除以它所占的百分比即可得到樣本容量;

(2)用總人數分別減去A、B、D等級的人數得到C等級的人數,然后補全條形圖;(3)用700乘以D等級的百分比可估計該中學八年級學生中體能測試結果為D等級的學生數;

(4)畫樹狀圖展示12種等可能的結果數,再找出抽取的兩人恰好都是男生的結果數,然后根據概率公式求解.【詳解】(1)10÷20%=50(名)答:本次抽樣調查共抽取了50名學生.(2)50-10-20-4=16(名)答:測試結果為C等級的學生有16名.圖形統計圖補充完整如下圖所示:(3)700×=56(名)答:估計該中學八年級學生中體能測試結果為D等級的學生有56名.(4)畫樹狀圖為:

共有12種等可能的結果數,其中抽取的兩人恰好都是男生的結果數為2,

所以抽取的兩人恰好都是男生的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.也考查了統計圖.22、(1)見解析;(2)①1;②:x=0或x=4﹣4或4<x<4;【解析】

(1)分別以M、N為圓心,以大于MN為半徑作弧,兩弧相交與兩點,過兩弧交點的直線就是MN的垂直平分線;(2)①分為PM=PN,MP=MN,NP=NM三種情況進行判斷即可;②如圖1,構建腰長為4的等腰直角△OMC,和半徑為4的⊙M,發現M在點D的位置時,滿足條件;如圖4,根據等腰三角形三種情況的畫法:分別以M、N為圓心,以MN為半徑畫弧,與OB的交點就是滿足條件的點P,再以MN為底邊的等腰三角形,通過畫圖發現

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論