




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是甲、乙兩位同學在六次數學小測試(滿分100分)中得分情況的莖葉圖,則下列說法錯誤的是()A.甲得分的平均數比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數和乙相等2.已知角的終邊經過點,則的值是A.1或 B.或 C.1或 D.或3.設為自然對數的底數,函數,若,則()A. B. C. D.4.對于定義在上的函數,若下列說法中有且僅有一個是錯誤的,則錯誤的一個是()A.在上是減函數 B.在上是增函數C.不是函數的最小值 D.對于,都有5.從裝有除顏色外完全相同的3個白球和個黑球的布袋中隨機摸取一球,有放回的摸取5次,設摸得白球數為,已知,則A. B. C. D.6.設,是雙曲線的左,右焦點,是坐標原點,過點作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.7.已知直線,,則“”是“”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.49.已知的部分圖象如圖所示,則的表達式是()A. B.C. D.10.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.11.下列函數中既關于直線對稱,又在區間上為增函數的是()A.. B.C. D.12.已知函數在上都存在導函數,對于任意的實數都有,當時,,若,則實數的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為矩形的對角線的交點,現從這5個點中任選3個點,則這3個點不共線的概率為________.14.函數的定義域是.15.設f(x)=etx(t>0),過點P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點為Q,曲線C過點Q的切線交x軸于點R,若S(1,f(1)),則△PRS的面積的最小值是_____.16.已知直線被圓截得的弦長為2,則的值為__三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對任意,都有恒成立,求實數a的取值范圍;(3)證明:對一切,都有成立.18.(12分)已知直線:(為參數),曲線(為參數).(1)設與相交于,兩點,求;(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線距離的最小值.19.(12分)已知橢圓的離心率為,且過點,點在第一象限,為左頂點,為下頂點,交軸于點,交軸于點.(1)求橢圓的標準方程;(2)若,求點的坐標.20.(12分)武漢有“九省通衢”之稱,也稱為“江城”,是國家歷史文化名城.其中著名的景點有黃鶴樓、戶部巷、東湖風景區等等.(1)為了解“五·一”勞動節當日江城某旅游景點游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機抽取了1000人,制成了如圖的頻率分布直方圖:現從年齡在內的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機抽取4人,記4人中年齡在內的人數為,求;(2)為了給游客提供更舒適的旅游體驗,該旅游景點游船中心計劃在2020年勞動節當日投入至少1艘至多3艘型游船供游客乘坐觀光.由2010到2019這10年間的數據資料顯示每年勞動節當日客流量(單位:萬人)都大于1.將每年勞動節當日客流量數據分成3個區間整理得表:勞動節當日客流量頻數(年)244以這10年的數據資料記錄的3個區間客流量的頻率作為每年客流量在該區間段發生的概率,且每年勞動節當日客流量相互獨立.該游船中心希望投入的型游船盡可能被充分利用,但每年勞動節當日型游船最多使用量(單位:艘)要受當日客流量(單位:萬人)的影響,其關聯關系如下表:勞動節當日客流量型游船最多使用量123若某艘型游船在勞動節當日被投入且被使用,則游船中心當日可獲得利潤3萬元;若某艘型游船勞動節當日被投入卻不被使用,則游船中心當日虧損0.5萬元.記(單位:萬元)表示該游船中心在勞動節當日獲得的總利潤,的數學期望越大游船中心在勞動節當日獲得的總利潤越大,問該游船中心在2020年勞動節當日應投入多少艘型游船才能使其當日獲得的總利潤最大?21.(12分)已知數列滿足,,數列滿足.(Ⅰ)求證數列是等比數列;(Ⅱ)求數列的前項和.22.(10分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點P在棱DF上.(1)若P是DF的中點,求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長度.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由平均數、方差公式和極差、中位數概念,可得所求結論.【詳解】對于甲,;對于乙,,故正確;甲的極差為,乙的極差為,故錯誤;對于甲,方差.5,對于乙,方差,故正確;甲得分的中位數為,乙得分的中位數為,故正確.故選:.【點睛】本題考查莖葉圖的應用,考查平均數和方差等概念,培養計算能力,意在考查學生對這些知識的理解掌握水平,屬于基礎題.2、B【解析】
根據三角函數的定義求得后可得結論.【詳解】由題意得點與原點間的距離.①當時,,∴,∴.②當時,,∴,∴.綜上可得的值是或.故選B.【點睛】利用三角函數的定義求一個角的三角函數值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標x,縱坐標y,該點到原點的距離r,然后再根據三角函數的定義求解即可.3、D【解析】
利用與的關系,求得的值.【詳解】依題意,所以故選:D【點睛】本小題主要考查函數值的計算,屬于基礎題.4、B【解析】
根據函數對稱性和單調性的關系,進行判斷即可.【詳解】由得關于對稱,若關于對稱,則函數在上不可能是單調的,故錯誤的可能是或者是,若錯誤,則在,上是減函數,在在上是增函數,則為函數的最小值,與矛盾,此時也錯誤,不滿足條件.故錯誤的是,故選:.【點睛】本題主要考查函數性質的綜合應用,結合對稱性和單調性的關系是解決本題的關鍵.5、B【解析】
由題意知,,由,知,由此能求出.【詳解】由題意知,,,解得,,.故選:B.【點睛】本題考查離散型隨機變量的方差的求法,解題時要認真審題,仔細解答,注意二項分布的靈活運用.6、B【解析】
設過點作的垂線,其方程為,聯立方程,求得,,即,由,列出相應方程,求出離心率.【詳解】解:不妨設過點作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.【點睛】本題主要考查雙曲線的概念、直線與直線的位置關系等基礎知識,考查運算求解、推理論證能力,屬于中檔題.7、C【解析】
先得出兩直線平行的充要條件,根據小范圍可推導出大范圍,可得到答案.【詳解】直線,,的充要條件是,當a=2時,化簡后發現兩直線是重合的,故舍去,最終a=-1.因此得到“”是“”的充分必要條件.故答案為C.【點睛】判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.8、B【解析】
解出,分別代入選項中的值進行驗證.【詳解】解:,.當時,,此時不成立.當時,,此時成立,符合題意.故選:B.【點睛】本題考查了不等式的解法,考查了集合的關系.9、D【解析】
由圖象求出以及函數的最小正周期的值,利用周期公式可求得的值,然后將點的坐標代入函數的解析式,結合的取值范圍求出的值,由此可得出函數的解析式.【詳解】由圖象可得,函數的最小正周期為,.將點代入函數的解析式得,得,,,則,,因此,.故選:D.【點睛】本題考查利用圖象求三角函數解析式,考查分析問題和解決問題的能力,屬于中等題.10、D【解析】
先根據向量坐標運算求出和,進而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點睛】此題考查向量的坐標運算,引入新定義,屬于簡單題目.11、C【解析】
根據函數的對稱性和單調性的特點,利用排除法,即可得出答案.【詳解】A中,當時,,所以不關于直線對稱,則錯誤;B中,,所以在區間上為減函數,則錯誤;D中,,而,則,所以不關于直線對稱,則錯誤;故選:C.【點睛】本題考查函數基本性質,根據函數的解析式判斷函數的對稱性和單調性,屬于基礎題.12、B【解析】
先構造函數,再利用函數奇偶性與單調性化簡不等式,解得結果.【詳解】令,則當時,,又,所以為偶函數,從而等價于,因此選B.【點睛】本題考查利用函數奇偶性與單調性求解不等式,考查綜合分析求解能力,屬中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
基本事件總數,這3個點共線的情況有兩種和,由此能求出這3個點不共線的概率.【詳解】解:為矩形的對角線的交點,現從,,,,這5個點中任選3個點,基本事件總數,這3個點共線的情況有兩種和,這3個點不共線的概率為.故答案為:.【點睛】本題考查概率的求法,考查對立事件概率計算公式等基礎知識,考查運算求解能力,屬于基礎題.14、【解析】解:因為,故定義域為15、【解析】
計算R(t,0),PR=t﹣(t),△PRS的面積為S,導數S′,由S′=0得t=1,根據函數的單調性得到最值.【詳解】∵PQ∥y軸,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的導數f′(x)=tetx,∴過Q的切線斜率k=t,設R(r,0),則k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面積為S,導數S′,由S′=0得t=1,當t>1時,S′>0,當0<t<1時,S′<0,∴t=1為極小值點,也為最小值點,∴△PRS的面積的最小值為.故答案為:.【點睛】本題考查了利用導數求面積的最值問題,意在考查學生的計算能力和應用能力.16、1【解析】
根據弦長為半徑的兩倍,得直線經過圓心,將圓心坐標代入直線方程可解得.【詳解】解:圓的圓心為(1,1),半徑,
因為直線被圓截得的弦長為2,
所以直線經過圓心(1,1),
,解得.故答案為:1.【點睛】本題考查了直線與圓相交的性質,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)((3)見證明【解析】
(1)先求函數導數,再求導函數零點,列表分析導函數符號變化規律確定函數單調性,最后根據函數單調性確定最小值取法;(2)先分離不等式,轉化為對應函數最值問題,利用導數求對應函數最值即得結果;(3)構造兩個函數,再利用兩函數最值關系進行證明.【詳解】(1)當時,單調遞減,當時,單調遞增,所以函數f(x)的最小值為f()=;(2)因為所以問題等價于在上恒成立,記則,因為,令函數f(x)在(0,1)上單調遞減;函數f(x)在(1,+)上單調遞增;即,即實數a的取值范圍為(.(3)問題等價于證明由(1)知道,令函數在(0,1)上單調遞增;函數在(1,+)上單調遞減;所以{,因此,因為兩個等號不能同時取得,所以即對一切,都有成立.【點睛】對于求不等式成立時的參數范圍問題,在可能的情況下把參數分離出來,使不等式一端是含有參數的不等式,另一端是一個區間上具體的函數,這樣就把問題轉化為一端是函數,另一端是參數的不等式,便于問題的解決.但要注意分離參數法不是萬能的,如果分離參數后,得出的函數解析式較為復雜,性質很難研究,就不要使用分離參數法.18、(1);(2).【解析】
(1)將直線和曲線化為普通方程,聯立直線和曲線,可得交點坐標,可得的值;(2)可得曲線的參數方程,利用點到直線的距離公式結合三角形的最值可得答案.【詳解】解:(1)直線的普通方程為,的普通方程.聯立方程組,解得與的交點為,,則.(2)曲線的參數方程為(為參數),故點的坐標為,從而點到直線的距離是,由此當時,取得最小值,且最小值為.【點睛】本題主要考查參數方程與普通方程的轉化及參數方程的基本性質、點到直線的距離公式等,屬于中檔題.19、(1);(2)【解析】
(1)由題意得,求出,進而可得到橢圓的方程;(2)由(1)知點,坐標,設直線的方程為,易知,可得點的坐標為,聯立方程,得到關于的一元二次方程,結合根與系數關系,可用表示的坐標,進而由三點共線,即,可用表示的坐標,再結合,可建立方程,從而求出的值,即可求得點的坐標.【詳解】(1)由題意得,解得,所以橢圓的方程為.(2)由(1)知點,,由題意可設直線的斜率為,則,所以直線的方程為,則點的坐標為,聯立方程,消去得:.設,則,所以,所以,所以.設點的坐標為,因為點三點共線,所以,即,所以,所以.因為,所以,即,所以,解得,又,所以符合題意,計算可得,,故點的坐標為.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,考查平行線的性質,考查學生的計算求解能力,屬于難題.20、(1);(2)投入3艘型游船使其當日獲得的總利潤最大【解析】
(1)首先計算出在,內抽取的人數,然后利用超幾何分布概率計算公式,計算出.(2)分別計算出投入艘游艇時,總利潤的期望值,由此確定當日游艇投放量.【詳解】(1)年齡在內的游客人數為150,年齡在內的游客人數為100;若采用分層抽樣的方法抽取10人,則年齡在內的人數為6人,年齡在內的人數為4人.可得.(2)①當投入1艘型游船時,因客流量總大于1,則(萬元).②當投入2艘型游船時,若,則,此時;若,則,此時;此時的分布列如下表:2.56此時(萬元).③當投入3艘型游船時,若,則,此時;若,則,此時;若,則,此時;此時的分布列如下表:25.59此時(萬元).由于,則該游船中心在2020年勞動節當日應投入3艘型游船使其當日獲得的總利潤最大.【點睛】本小題主要考查分層抽樣,考查超幾何分布概率計算公式,考查隨機變量分布列和期望的求法,考查分析與思考問題的能力,考查分類討論的數學思想方法,屬于中檔題.21、(Ⅰ)見證明;(Ⅱ)【解析】
(Ⅰ)利用等比數列的定義結合得出數列是等比數列(Ⅱ)數列是“等比-等差”的類型,利用分組求和即可得出前項和.【詳解】解:(Ⅰ)當時,,故.當時,,則,,數列是首項為,公比為的等比數列.(Ⅱ)由(Ⅰ)得,,,.【點睛】(Ⅰ)證明數列是等比數列可利用定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年中國南水北調集團招聘筆試真題
- 2024年黑龍江省公安廳下屬事業單位真題
- 2025年軟考軟件設計師名師建議試題及答案
- 2025屆江蘇省蘇州市吳中學區七下數學期末綜合測試試題含解析
- 網絡環境適應下的管理理念試題及答案
- 探討設計流程中的迭代與反饋試題及答案
- 電子商務與網絡管理試題及答案
- HTTP與HTTPS協議的區別及應用試題及答案
- 風險管理在企業戰略執行階段的作用試題及答案
- 數據保護與隱私試題及答案
- 團體體檢報告格式模板范文
- 漢heidenhain itnc用戶手冊探測循環
- 學習領會《在二十屆中央政治局第四次集體學習時的講話》心得
- 水稻聯合收割機使用與維護
- 供應商考核評分表
- 無土栽培學(全套課件660P)
- 《表觀遺傳》教學設計
- 20千伏及以下配電網工程業主項目部標準化管理手冊
- GB/T 3683-2011橡膠軟管及軟管組合件油基或水基流體適用的鋼絲編織增強液壓型規范
- GB/T 3036-1994船用中心型蝶閥
- GB/T 18920-2020城市污水再生利用城市雜用水水質
評論
0/150
提交評論