2022-2023學年湖南省長郡教育集團中考數學全真模擬試題含解析_第1頁
2022-2023學年湖南省長郡教育集團中考數學全真模擬試題含解析_第2頁
2022-2023學年湖南省長郡教育集團中考數學全真模擬試題含解析_第3頁
2022-2023學年湖南省長郡教育集團中考數學全真模擬試題含解析_第4頁
2022-2023學年湖南省長郡教育集團中考數學全真模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB與△OCD的面積分別是S1和S2,△OAB與△OCD的周長分別是C1和C2,則下列等式一定成立的是()A. B. C. D.2.如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點C沿順時針方向旋轉后得到三角形A′B′C,若點B′恰好落在線段AB上,AC、A′B′交于點O,則∠COA′的度數是()A.50° B.60° C.70° D.80°3.如圖,在平面直角坐標系中,以O為圓心,適當長為半徑畫弧,交x軸于點M,交y軸于點N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧在第二象限交于點P.若點P的坐標為(2a,b+1),則a與b的數量關系為A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=14.“保護水資源,節約用水”應成為每個公民的自覺行為.下表是某個小區隨機抽查到的10戶家庭的月用水情況,則下列關于這10戶家庭的月用水量說法錯誤的是()月用水量(噸)4569戶數(戶)3421A.中位數是5噸 B.眾數是5噸 C.極差是3噸 D.平均數是5.3噸5.如圖1,在△ABC中,D、E分別是AB、AC的中點,將△ADE沿線段DE向下折疊,得到圖1.下列關于圖1的四個結論中,不一定成立的是()A.點A落在BC邊的中點 B.∠B+∠1+∠C=180°C.△DBA是等腰三角形 D.DE∥BC6.對于代數式ax2+bx+c(a≠0),下列說法正確的是()①如果存在兩個實數p≠q,使得ap2+bp+c=aq2+bq+c,則a+bx+c=a(x-p)(x-q)②存在三個實數m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac<0,則一定存在兩個實數m<n,使am2+bm+c<0<an2+bn+c④如果ac>0,則一定存在兩個實數m<n,使am2+bm+c<0<an2+bn+cA.③ B.①③ C.②④ D.①③④7.﹣2×(﹣5)的值是()A.﹣7B.7C.﹣10D.108.如圖,已知在△ABC,AB=AC.若以點B為圓心,BC長為半徑畫弧,交腰AC于點E,則下列結論一定正確的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE9.如圖是由一些相同的小正方體組成的幾何體的三視圖,則組成這個幾何體的小正方體個數最多為()A.7 B.8 C.9 D.1010.下面的圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.B.C.D.11.為了大力宣傳節約用電,某小區隨機抽查了10戶家庭的月用電量情況,統計如下表,關于這10戶家庭的月用電量說法正確的是()月用電量(度)2530405060戶數12421A.極差是3 B.眾數是4 C.中位數40 D.平均數是20.512.式子在實數范圍內有意義,則x的取值范圍是()A.x>﹣2 B.x≥﹣2 C.x<﹣2 D.x≤﹣2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.點(-1,a)、(-2,b)是拋物線上的兩個點,那么a和b的大小關系是a_______b(填“>”或“<”或“=”).14.欣欣超市為促銷,決定對A,B兩種商品統一進行打8折銷售,打折前,買6件A商品和3件B商品需要54元,買3件A商品和4件B商品需要32元,打折后,小敏買50件A商品和40件B商品僅需________元.15.已知一組數據:3,3,4,5,5,則它的方差為____________16.拋物線向右平移1個單位,再向下平移2個單位所得拋物線是__________.17.已知:如圖,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.將△AOB繞頂點O,按順時針方向旋轉到△A1OB1處,此時線段OB1與AB的交點D恰好為AB的中點,則線段B1D=__________cm.18.早春二月的某一天,大連市南部地區的平均氣溫為﹣3℃,北部地區的平均氣溫為﹣6℃,則當天南部地區比北部地區的平均氣溫高_____℃.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)由我國完全自主設計、自主建造的首艘國產航母于2018年5月成功完成第一次海上試驗任務.如圖,航母由西向東航行,到達處時,測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時間后到達B處,測得小島位于它的北偏東方向.如果航母繼續航行至小島的正南方向的處,求還需航行的距離的長.20.(6分)解不等式組:,并求出該不等式組所有整數解的和.21.(6分)某天,甲、乙、丙三人一起乘坐公交車,他們上車時發現公交車上還有A,B,W三個空座位,且只有A,B兩個座位相鄰,若三人隨機選擇座位,試解決以下問題:(1)甲選擇座位W的概率是多少;(2)試用列表或畫樹狀圖的方法求甲、乙選擇相鄰座位A,B的概率.22.(8分)在一個不透明的布袋中裝兩個紅球和一個白球,這些球除顏色外均相同(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是.(2)甲、乙、丙三人依次從袋中摸出一個球,記錄顏色后不放回,試求出乙摸到白球的概率23.(8分)已知拋物線y=ax2+bx+c.(Ⅰ)若拋物線的頂點為A(﹣2,﹣4),拋物線經過點B(﹣4,0)①求該拋物線的解析式;②連接AB,把AB所在直線沿y軸向上平移,使它經過原點O,得到直線l,點P是直線l上一動點.設以點A,B,O,P為頂點的四邊形的面積為S,點P的橫坐標為x,當4+6≤S≤6+8時,求x的取值范圍;(Ⅱ)若a>0,c>1,當x=c時,y=0,當0<x<c時,y>0,試比較ac與l的大小,并說明理由.24.(10分)某市為了解市民對已閉幕的某一博覽會的總體印象,利用最新引進的“計算機輔助電話訪問系統”(簡稱CATI系統),采取電腦隨機抽樣的方式,對本市年齡在16~65歲之間的居民,進行了400個電話抽樣調查.并根據每個年齡段的抽查人數和該年齡段對博覽會總體印象感到滿意的人數繪制了下面的圖(1)和圖(1)(部分)根據上圖提供的信息回答下列問題:(1)被抽查的居民中,人數最多的年齡段是歲;(1)已知被抽查的400人中有83%的人對博覽會總體印象感到滿意,請你求出31~40歲年齡段的滿意人數,并補全圖1.注:某年齡段的滿意率=該年齡段滿意人數÷該年齡段被抽查人數×100%.25.(10分)在國家的宏觀調控下,某市的商品房成交價由去年10月份的14000元/下降到12月份的11340元/.求11、12兩月份平均每月降價的百分率是多少?如果房價繼續回落,按此降價的百分率,你預測到今年2月份該市的商品房成交均價是否會跌破10000元/?請說明理由26.(12分)如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點A(﹣,2),B(n,﹣1).求直線與雙曲線的解析式.點P在x軸上,如果S△ABP=3,求點P的坐標.27.(12分)如圖,小明的家在某住宅樓AB的最頂層(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道這座建筑物的高度,于是在自家陽臺的A處測得建筑物CD的底部C的俯角是43°,頂部D的仰角是25°,他又測得兩建筑物之間的距離BC是28米,請你幫助小明求出建筑物CD的高度(精確到1米).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】A選項,在△OAB∽△OCD中,OB和CD不是對應邊,因此它們的比值不一定等于相似比,所以A選項不一定成立;B選項,在△OAB∽△OCD中,∠A和∠C是對應角,因此,所以B選項不成立;C選項,因為相似三角形的面積比等于相似比的平方,所以C選項不成立;D選項,因為相似三角形的周長比等于相似比,所以D選項一定成立.故選D.2、B【解析】試題分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋轉的性質可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故選B.考點:旋轉的性質.3、B【解析】試題分析:根據作圖方法可得點P在第二象限角平分線上,則P點橫縱坐標的和為0,即2a+b+1=0,∴2a+b=﹣1.故選B.4、C【解析】

根據中位數、眾數、極差和平均數的概念,對選項一一分析,即可選擇正確答案.【詳解】解:A、中位數=(5+5)÷2=5(噸),正確,故選項錯誤;B、數據5噸出現4次,次數最多,所以5噸是眾數,正確,故選項錯誤;C、極差為9﹣4=5(噸),錯誤,故選項正確;D、平均數=(4×3+5×4+6×2+9×1)÷10=5.3,正確,故選項錯誤.故選:C.【點睛】此題主要考查了平均數、中位數、眾數和極差的概念.要掌握這些基本概念才能熟練解題.5、A【解析】

根據折疊的性質明確對應關系,易得∠A=∠1,DE是△ABC的中位線,所以易得B、D答案正確,D是AB中點,所以DB=DA,故C正確.【詳解】根據題意可知DE是三角形ABC的中位線,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A錯,BA≠CA.故選A.【點睛】主要考查了三角形的內角和外角之間的關系以及等腰三角形的性質.還涉及到翻折變換以及中位線定理的運用.(1)三角形的外角等于與它不相鄰的兩個內角和.(1)三角形的內角和是180度.求角的度數常常要用到“三角形的內角和是180°這一隱含的條件.通過折疊變換考查正多邊形的有關知識,及學生的邏輯思維能力.解答此類題最好動手操作.6、A【解析】設(1)如果存在兩個實數p≠q,使得ap2+bp+c=aq2+bq+c,則說明在中,當x=p和x=q時的y值相等,但并不能說明此時p、q是與x軸交點的橫坐標,故①中結論不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,則說明在中當x=m、n、s時,對應的y值相等,因此m、n、s中至少有兩個數是相等的,故②錯誤;(3)如果ac<0,則b2-4ac>0,則的圖象和x軸必有兩個不同的交點,所以此時一定存在兩個實數m<n,使am2+bm+c<0<an2+bn+c,故③在結論正確;(4)如果ac>0,則b2-4ac的值的正負無法確定,此時的圖象與x軸的交點情況無法確定,所以④中結論不一定成立.綜上所述,四種說法中正確的是③.故選A.7、D【解析】

根據有理數乘法法則計算.【詳解】﹣2×(﹣5)=+(2×5)=10.故選D.【點睛】考查了有理數的乘法法則,(1)兩數相乘,同號得正,異號得負,并把絕對值相乘;(2)任何數同0相乘,都得0;(3)幾個不等于0的數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積為負;當負因數有偶數個時,積為正;(4)幾個數相乘,有一個因數為0時,積為0.8、C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以點B為圓心,BC長為半徑畫弧,交腰AC于點E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故選C.點睛:本題考查了等腰三角形的性質,當等腰三角形的底角對應相等時其頂角也相等,難度不大.9、C【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】根據三視圖知,該幾何體中小正方體的分布情況如下圖所示:所以組成這個幾何體的小正方體個數最多為9個,故選C.【點睛】考查了三視圖判定幾何體,關鍵是對三視圖靈活運用,體現了對空間想象能力的考查.10、B【解析】試題解析:A.是軸對稱圖形但不是中心對稱圖形B.既是軸對稱圖形又是中心對稱圖形;C.是中心對稱圖形,但不是軸對稱圖形;D.是軸對稱圖形不是中心對稱圖形;故選B.11、C【解析】

極差、中位數、眾數、平均數的定義和計算公式分別對每一項進行分析,即可得出答案.【詳解】解:A、這組數據的極差是:60-25=35,故本選項錯誤;

B、40出現的次數最多,出現了4次,則眾數是40,故本選項錯誤;

C、把這些數從小到大排列,最中間兩個數的平均數是(40+40)÷2=40,則中位數是40,故本選項正確;

D、這組數據的平均數(25+30×2+40×4+50×2+60)÷10=40.5,故本選項錯誤;

故選:C.【點睛】本題考查了極差、平均數、中位數、眾數的知識,解答本題的關鍵是掌握各知識點的概念.12、B【解析】

根據二次根式有意義的條件可得,再解不等式即可.【詳解】解:由題意得:,解得:,

故選:B.【點睛】此題主要考查了二次根式有意義的條件,關鍵是掌握二次根式中的被開方數是非負數.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、<【解析】把點(-1,a)、(-2,b)分別代入拋物線,則有:a=1-2-3=-4,b=4-4-3=-3,-4<-3,所以a<b,故答案為<.14、1【解析】

設A、B兩種商品的售價分別是1件x元和1件y元,根據題意列出x和y的二元一次方程組,解方程組求出x和y的值,進而求解即可.【詳解】解:設A、B兩種商品的售價分別是1件x元和1件y元,根據題意得,解得.所以0.8×(8×50+2×40)=1(元).即打折后,小敏買50件A商品和40件B商品僅需1元.故答案為1.【點睛】本題考查了利用二元一次方程組解決現實生活中的問題.解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的等量關系,列出方程組,再求解.15、【解析】根據題意先求出這組數據的平均數是:(3+3+4+5+5)÷5=4,再根據方差公式求出這組數據的方差為:×[(3–4)2+(3–4)2+(4–4)2+(5–4)2+(5–4)2]=.故答案為.16、(或)【解析】

將拋物線化為頂點式,再按照“左加右減,上加下減”的規律平移即可.【詳解】解:化為頂點式得:,∴向右平移1個單位,再向下平移2個單位得:,化為一般式得:,故答案為:(或).【點睛】此題不僅考查了對圖象平移的理解,同時考查了學生將一般式轉化頂點式的能力.17、1.1【解析】試題解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==1cm,∵點D為AB的中點,∴OD=AB=2.1cm.∵將△AOB繞頂點O,按順時針方向旋轉到△A1OB1處,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案為1.1.18、3【解析】

用南部氣溫減北部的氣溫,根據“減去一個數等于加上這個數的相反數”求出它們的差就是高出的溫度.【詳解】解:(﹣3)﹣(﹣6)=﹣3+6=3℃.答:當天南部地區比北部地區的平均氣溫高3℃,故答案為:3.【點睛】本題考查了有理數的減法運算法則,減法運算法則:減去一個數等于加上這個數的相反數.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、還需要航行的距離的長為20.4海里.【解析】分析:根據題意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函數得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.詳解:由題知:,,.在中,,,(海里).在中,,,(海里).答:還需要航行的距離的長為20.4海里.點睛:此題考查了解直角三角形的應用-方向角問題,三角函數的應用;求出CD的長度是解決問題的關鍵.20、1【解析】

分別求出每一個不等式的解集,根據口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【詳解】解:,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式組的解集為:﹣2<x≤3,所以所有整數解的和為:﹣1+0+1+2+3=1.【點睛】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.21、(1);(2)【解析】

(1)根據概率公式計算可得;(2)畫樹狀圖列出所有等可能結果,從中找到符合要求的結果數,利用概率公式計算可得.【詳解】解:(1)由于共有A、B、W三個座位,∴甲選擇座位W的概率為,故答案為:;(2)畫樹狀圖如下:由圖可知,共有6種等可能結果,其中甲、乙選擇相鄰的座位有兩種,所以P(甲乙相鄰)==.【點睛】此題考查了樹狀圖法求概率.注意樹狀圖法適合兩步或兩步以上完成的事件,樹狀圖法可以不重不漏的表示出所有等可能的結果,用到的知識點為:概率=所求情況數與總情況數之比.22、(1);(2).【解析】

(1)直接利用概率公式求解;

(2)畫樹狀圖展示所有6種等可能的結果數,再找出乙摸到白球的結果數,然后根據概率公式求解.【詳解】解:(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是;

故答案為:;

(2)畫樹狀圖為:

共有6種等可能的結果數,其中乙摸到白球的結果數為2,

所以乙摸到白球的概率==.【點睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式求事件A或B的概率.23、(Ⅰ)①y=x2+3x②當3+6≤S≤6+2時,x的取值范圍為是≤x≤或≤x≤(Ⅱ)ac≤1【解析】

(I)①由拋物線的頂點為A(-2,-3),可設拋物線的解析式為y=a(x+2)2-3,代入點B的坐標即可求出a值,此問得解,②根據點A、B的坐標利用待定系數法可求出直線AB的解析式,進而可求出直線l的解析式,分點P在第二象限及點P在第四象限兩種情況考慮:當點P在第二象限時,x<0,通過分割圖形求面積法結合3+6≤S≤6+2,即可求出x的取值范圍,當點P在第四象限時,x>0,通過分割圖形求面積法結合3+6≤S≤6+2,即可求出x的取值范圍,綜上即可得出結論,(2)由當x=c時y=0,可得出b=-ac-1,由當0<x<c時y>0,可得出拋物線的對稱軸x=≥c,進而可得出b≤-2ac,結合b=-ac-1即可得出ac≤1.【詳解】(I)①設拋物線的解析式為y=a(x+2)2﹣3,∵拋物線經過點B(﹣3,0),∴0=a(﹣3+2)2﹣3,解得:a=1,∴該拋物線的解析式為y=(x+2)2﹣3=x2+3x.②設直線AB的解析式為y=kx+m(k≠0),將A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,得:,解得:,∴直線AB的解析式為y=﹣2x﹣2.∵直線l與AB平行,且過原點,∴直線l的解析式為y=﹣2x.當點P在第二象限時,x<0,如圖所示.S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,∴S=S△POB+S△AOB=﹣3x+2(x<0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范圍是≤x≤.當點P′在第四象限時,x>0,過點A作AE⊥x軸,垂足為點E,過點P′作P′F⊥x軸,垂足為點F,則S四邊形AEOP′=S梯形AEFP′﹣S△OFP′=?(x+2)﹣?x?(2x)=3x+3.∵S△ABE=×2×3=3,∴S=S四邊形AEOP′+S△ABE=3x+2(x>0).∵3+6≤S≤6+2,∴,即,解得:≤x≤,∴x的取值范圍為≤x≤.綜上所述:當3+6≤S≤6+2時,x的取值范圍為是≤x≤或≤x≤.(II)ac≤1,理由如下:∵當x=c時,y=0,∴ac2+bc+c=0,∵c>1,∴ac+b+1=0,b=﹣ac﹣1.由x=c時,y=0,可知拋物線與x軸的一個交點為(c,0).把x=0代入y=ax2+bx+c,得y=c,∴拋物線與y軸的交點為(0,c).∵a>0,∴拋物線開口向上.∵當0<x<c時,y>0,∴拋物線的對稱軸x=﹣≥c,∴b≤﹣2ac.∵b=﹣ac﹣1,∴﹣ac﹣1≤﹣2ac,∴ac≤1.【點睛】本題主要考查了待定系數法求二次(一次)函數解析式、三角形的面積、梯形的面積、解一元一次不等式組、二次函數圖象上點的坐標特征以及二次函數的性質,解題的關鍵是:(1)①巧設頂點式,代入點B的坐標求出a值,②分點P在第二象限及點P在第四象限兩種情況找出x的取值范圍,(2)根據二次函數圖象上點的坐標特征結合二次函數的性質,找出b=-ac-1及b≤-2ac.24、(1)11~30;(1)31~40歲年齡段的滿意人數為66人,圖見解析;【解析】

(1)取扇形統計圖中所占百分比最大的年齡段即可;(1)先求出總體感到滿意的總人數,然后減去其它年齡段的人數即可,再補全條形圖.【詳解】(1)由扇形統計圖可得11~30歲的人數所占百分比最大為39%,所以,人數最多的年齡段是11~30歲;(1)根據題意,被調查的人中,總體印象感到滿意的有:400×83%=331人,31~40歲年齡段的滿意人數為:331﹣54﹣116﹣53﹣14﹣9=331﹣116=66人,補全統計圖如圖.【點睛】本題考點:條形統計圖與扇形統計圖.25、(1)10%;(1)會跌破10000元/m1.【解析】

(1)設11、11兩月平均每月降價的百分率是x,那么4月份的房價為14000(1-x),11月份的房價為14000(1-x)1,然后根據11月份的11340元/m1即可列出方程解決問題;(1)根據(1)的結果可以計算出今年1月份商品房成交均價,然后和10000元/m1進行比較即可作出判斷.【詳解】(1)設11、11兩月平均每月降價的百分率是x,則11月份的成交價是:14000(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論