




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.從3、1、-2這三個數中任取兩個不同的數作為P點的坐標,則P點剛好落在第四象限的概率是()A. B. C. D.2.現有三張背面完全相同的卡片,正面分別標有數字﹣1,﹣2,3,把卡片背面朝上洗勻,然后從中隨機抽取兩張,則這兩張卡片正面數字之和為正數的概率是()A. B. C. D.3.如圖,點A為∠α邊上任意一點,作AC⊥BC于點C,CD⊥AB于點D,下列用線段比表示cosα的值,錯誤的是(
)A. B. C. D.4.在平面直角坐標系xOy中,若點P(3,4)在⊙O內,則⊙O的半徑r的取值范圍是()A.0<r<3 B.r>4 C.0<r<5 D.r>55.如圖,點D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一條弦,則cos∠OBD=()A. B. C. D.6.化簡÷的結果是()A. B. C. D.2(x+1)7.如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠AFG的值為()A. B. C. D.8.如圖,在平面直角坐標系中,等腰直角三角形ABC的頂點A、B分別在x軸、y軸的正半軸上,∠ABC=90°,CA⊥x軸,點C在函數y=(x>0)的圖象上,若AB=2,則k的值為()A.4 B.2 C.2 D.9.關于x的不等式組的所有整數解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,210.如圖,將繞直角頂點順時針旋轉,得到,連接,若,則的度數是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AC是正五邊形ABCDE的一條對角線,則∠ACB=_____.12.如果拋物線y=ax2+5的頂點是它的最低點,那么a的取值范圍是_____.13.如圖,AB=AC,要使△ABE≌△ACD,應添加的條件是(添加一個條件即可).14.已知點A,B的坐標分別為(﹣2,3)、(1,﹣2),將線段AB平移,得到線段A′B′,其中點A與點A′對應,點B與點B′對應,若點A′的坐標為(2,﹣3),則點B′的坐標為________.15.如圖,在△ABC中,∠ACB=90°,AC=BC=3,將△ABC折疊,使點A落在BC邊上的點D處,EF為折痕,若AE=2,則sin∠BFD的值為_____.16.計算:﹣|﹣2|+()﹣1=_____.三、解答題(共8題,共72分)17.(8分)為響應市政府“創建國家森林城市”的號召,某小區計劃購進A、B兩種樹苗共17棵,已知A種樹苗每棵80元,B種樹苗每棵60元.若購進A、B兩種樹苗剛好用去1220元,問購進A、B兩種樹苗各多少棵?若購買B種樹苗的數量少于A種樹苗的數量,請你給出一種費用最省的方案,并求出該方案所需費用.18.(8分)如圖,△ABC中AB=AC,請你利用尺規在BC邊上求一點P,使△ABC~△PAC不寫畫法,(保留作圖痕跡).19.(8分)某商場要經營一種新上市的文具,進價為20元,試營銷階段發現:當銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數關系式;求銷售單價為多少元時,該文具每天的銷售利潤最大;商場的營銷部結合上述情況,提出了A、B兩種營銷方案方案A:該文具的銷售單價高于進價且不超過30元;方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元請比較哪種方案的最大利潤更高,并說明理由20.(8分)如圖,在△ABC中,∠ABC=90°,BD為AC邊上的中線.(1)按如下要求尺規作圖,保留作圖痕跡,標注相應的字母:過點C作直線CE,使CE⊥BC于點C,交BD的延長線于點E,連接AE;(2)求證:四邊形ABCE是矩形.21.(8分)閱讀下列材料:數學課上老師布置一道作圖題:已知:直線l和l外一點P.求作:過點P的直線m,使得m∥l.小東的作法如下:作法:如圖2,(1)在直線l上任取點A,連接PA;(2)以點A為圓心,適當長為半徑作弧,分別交線段PA于點B,直線l于點C;(3)以點P為圓心,AB長為半徑作弧DQ,交線段PA于點D;(4)以點D為圓心,BC長為半徑作弧,交弧DQ于點E,作直線PE.所以直線PE就是所求作的直線m.老師說:“小東的作法是正確的.”請回答:小東的作圖依據是________.22.(10分)如圖中的小方格都是邊長為1的正方形,△ABC的頂點和O點都在正方形的頂點上.以點O為位似中心,在方格圖中將△ABC放大為原來的2倍,得到△A′B′C′;△A′B′C′繞點B′順時針旋轉90°,畫出旋轉后得到的△A″B′C″,并求邊A′B′在旋轉過程中掃過的圖形面積.23.(12分)計算:2sin30°﹣(π﹣)0+|﹣1|+()﹣124.班級的課外活動,學生們都很積極.梁老師在某班對同學們進行了一次關于“我喜愛的體育項目”的調査,下面是他通過收集數據后,繪制的兩幅不完整的統計圖.請根據圖中的信息,解答下列問題:調查了________名學生;補全條形統計圖;在扇形統計圖中,“乒乓球”部分所對應的圓心角度數為________;學校將舉辦運動會,該班將推選5位同學參加乒乓球比賽,有3位男同學和2位女同學,現準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】解:畫樹狀圖得:∵共有6種等可能的結果,其中(1,-2),(3,-2)點落在第四項象限,∴P點剛好落在第四象限的概率==.故選B.點睛:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,熟記各象限內點的符號特點是解題的關鍵.2、D【解析】
先找出全部兩張卡片正面數字之和情況的總數,再先找出全部兩張卡片正面數字之和為正數情況的總數,兩者的比值即為所求概率.【詳解】任取兩張卡片,數字之和一共有﹣3、2、1三種情況,其中和為正數的有2、1兩種情況,所以這兩張卡片正面數字之和為正數的概率是.故選D.【點睛】本題主要考查概率的求法,熟練掌握概率的求法是解題的關鍵.3、D【解析】
根據銳角三角函數的定義,余弦是鄰邊比斜邊,可得答案.【詳解】cosα=.故選D.【點睛】熟悉掌握銳角三角函數的定義是關鍵.4、D【解析】
先利用勾股定理計算出OP=1,然后根據點與圓的位置關系的判定方法得到r的范圍.【詳解】∵點P的坐標為(3,4),∴OP1.∵點P(3,4)在⊙O內,∴OP<r,即r>1.故選D.【點睛】本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.5、C【解析】
根據圓的弦的性質,連接DC,計算CD的長,再根據直角三角形的三角函數計算即可.【詳解】∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,連接CD,如圖所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=.故選:C.【點睛】本題主要三角函數的計算,結合考查圓性質的計算,關鍵在于利用等量替代原則.6、A【解析】
原式利用除法法則變形,約分即可得到結果.【詳解】原式=?(x﹣1)=.故選A.【點睛】本題考查了分式的乘除法,熟練掌握運算法則是解答本題的關鍵.7、B【解析】
如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.由題意可得:DE=1,∠HDE=60°,△BCD是等邊三角形,即可求DH的長,HE的長,AE的長,
NE的長,EF的長,則可求sin∠AFG的值.【詳解】解:如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.
∵四邊形ABCD是菱形,AB=4,∠DAB=60°,
∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
∴∠HDE=∠DAB=60°,
∵點E是CD中點
∴DE=CD=1
在Rt△DEH中,DE=1,∠HDE=60°
∴DH=1,HE=
∴AH=AD+DH=5
在Rt△AHE中,AE==1
∴AN=NE=,AE⊥GF,AF=EF
∵CD=BC,∠DCB=60°
∴△BCD是等邊三角形,且E是CD中點
∴BE⊥CD,
∵BC=4,EC=1
∴BE=1
∵CD∥AB
∴∠ABE=∠BEC=90°
在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
∴EF=由折疊性質可得∠AFG=∠EFG,
∴sin∠EFG=sin∠AFG=,故選B.【點睛】本題考查了折疊問題,菱形的性質,勾股定理,添加恰當的輔助線構造直角三角形,利用勾股定理求線段長度是本題的關鍵.8、A【解析】【分析】作BD⊥AC于D,如圖,先利用等腰直角三角形的性質得到AC=AB=2,BD=AD=CD=,再利用AC⊥x軸得到C(,2),然后根據反比例函數圖象上點的坐標特征計算k的值.【詳解】作BD⊥AC于D,如圖,∵△ABC為等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x軸,∴C(,2),把C(,2)代入y=得k=×2=4,故選A.【點睛】本題考查了等腰直角三角形的性質以及反比例函數圖象上點的坐標特征,熟知反比例函數y=(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k是解題的關鍵.9、B【解析】
分別求出每一個不等式的解集,根據口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集,據此即可得出答案.【詳解】解不等式﹣2x<4,得:x>﹣2,解不等式3x﹣5<1,得:x<2,則不等式組的解集為﹣2<x<2,所以不等式組的整數解為﹣1、0、1,故選:B.【點睛】考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.10、B【解析】
根據旋轉的性質可得AC=A′C,然后判斷出△ACA′是等腰直角三角形,根據等腰直角三角形的性質可得∠CAA′=45°,再根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠A′B′C,最后根據旋轉的性質可得∠B=∠A′B′C.【詳解】解:∵Rt△ABC繞直角頂點C順時針旋轉90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,∴∠B=∠A′B′C=65°.故選B.【點睛】本題考查了旋轉的性質,等腰直角三角形的判定與性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記各性質并準確識圖是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、36°【解析】
由正五邊形的性質得出∠B=108°,AB=CB,由等腰三角形的性質和三角形內角和定理即可得出結果.【詳解】∵五邊形ABCDE是正五邊形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案為36°.12、a>1【解析】根據二次函數的圖像,由拋物線y=ax2+5的頂點是它的最低點,知a>1,故答案為a>1.13、AE=AD(答案不唯一).【解析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,則可以添加AE=AD,利用SAS來判定其全等;或添加∠B=∠C,利用ASA來判定其全等;或添加∠AEB=∠ADC,利用AAS來判定其全等.等(答案不唯一).14、(5,﹣8)【解析】
各對應點之間的關系是橫坐標加4,縱坐標減6,那么讓點B的橫坐標加4,縱坐標減6即為點B′的坐標.【詳解】由A(-2,3)的對應點A′的坐標為(2,-13),坐標的變化規律可知:各對應點之間的關系是橫坐標加4,縱坐標減6,∴點B′的橫坐標為1+4=5;縱坐標為-2-6=-8;即所求點B′的坐標為(5,-8).故答案為(5,-8)【點睛】此題主要考查了坐標與圖形的變化-平移,解決本題的關鍵是根據已知對應點找到各對應點之間的變化規律.15、【解析】分析:過點D作DGAB于點G.根據折疊性質,可得AE=DE=2,AF=DF,CE=1,在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由銳角三角函數求得,;設AF=DF=x,則FG=,在Rt△DFG中,根據勾股定理得方程=,解得,從而求得.的值詳解:如圖所示,過點D作DGAB于點G.根據折疊性質,可知△AEF△DEF,∴AE=DE=2,AF=DF,CE=AC-AE=1,在Rt△DCE中,由勾股定理得,∴DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,,;設AF=DF=x,得FG=AB-AF-GB=,在Rt△DFG中,,即=,解得,∴==.故答案為.點睛:主要考查了翻折變換的性質、勾股定理、銳角三件函數的定義;解題的關鍵是靈活運用折疊的性質、勾股定理、銳角三角函數的定義等知識來解決問題.16、﹣1【解析】
根據立方根、絕對值及負整數指數冪等知識點解答即可.【詳解】原式=-2-2+3=-1【點睛】本題考查了實數的混合運算,解題的關鍵是掌握運算法則及運算順序.三、解答題(共8題,共72分)17、(1)購進A種樹苗1棵,B種樹苗2棵(2)購進A種樹苗9棵,B種樹苗8棵,這時所需費用為1200元【解析】
(1)設購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,利用購進A、B兩種樹苗剛好用去1220元,結合單價,得出等式方程求出即可;(2)結合(1)的解和購買B種樹苗的數量少于A種樹苗的數量,可找出方案.【詳解】解:(1)設購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,根據題意得:80x+60(12﹣x)=1220,解得:x=1.∴12﹣x=2.答:購進A種樹苗1棵,B種樹苗2棵.(2)設購進A種樹苗x棵,則購進B種樹苗(12﹣x)棵,根據題意得:12﹣x<x,解得:x>8.3.∵購進A、B兩種樹苗所需費用為80x+60(12﹣x)=20x+120,是x的增函數,∴費用最省需x取最小整數9,此時12﹣x=8,所需費用為20×9+120=1200(元).答:費用最省方案為:購進A種樹苗9棵,B種樹苗8棵,這時所需費用為1200元.18、見解析【解析】
根據題意作∠CBA=∠CAP即可使得△ABC~△PAC.【詳解】如圖,作∠CBA=∠CAP,P點為所求.【點睛】此題主要考查相似三角形的尺規作圖,解題的關鍵是作一個角與已知角相等.19、(1)w=-10x2+700x-10000;(2)即銷售單價為35元時,該文具每天的銷售利潤最大;(3)A方案利潤更高.【解析】
試題分析:(1)根據利潤=(單價-進價)×銷售量,列出函數關系式即可.(2)根據(1)式列出的函數關系式,運用配方法求最大值.(3)分別求出方案A、B中x的取值范圍,然后分別求出A、B方案的最大利潤,然后進行比較.【詳解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴當x=35時,w有最大值2250,即銷售單價為35元時,該文具每天的銷售利潤最大.(3)A方案利潤高,理由如下:A方案中:20<x≤30,函數w=-10(x-35)2+2250隨x的增大而增大,∴當x=30時,w有最大值,此時,最大值為2000元.B方案中:,解得x的取值范圍為:45≤x≤49.∵45≤x≤49時,函數w=-10(x-35)2+2250隨x的增大而減小,∴當x=45時,w有最大值,此時,最大值為1250元.∵2000>1250,∴A方案利潤更高20、(1)見解析;(2)見解析.【解析】
(1)根據題意作圖即可;
(2)先根據BD為AC邊上的中線,AD=DC,再證明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四邊形ABCE是矩形.【詳解】(1)解:如圖所示:E點即為所求;(2)證明:∵CE⊥BC,∴∠BCE=90°,∵∠ABC=90°,∴∠BCE+∠ABC=180°,∴AB∥CE,∴∠ABE=∠CEB,∠BAC=∠ECA,∵BD為AC邊上的中線,∴AD=DC,在△ABD和△CED中,∴△ABD≌△CED(AAS),∴AB=EC,∴四邊形ABCE是平行四邊形,∵∠ABC=90°,∴平行四邊形ABCE是矩形.【點睛】本題考查了全等三角形的判定與性質與矩形的性質,解題的關鍵是熟練的掌握全等三角形的判定與性質與矩形的性質.21、內錯角相等,兩直線平行【解析】
根據內錯角相等,兩直線平行即可判斷.【詳解】∵∠EPA=∠CAP,∴m∥l(內錯角相等,兩直線平行).故答案為:內錯角相等,兩直線平行.【點睛】本題考查了作圖﹣復雜作圖,平行線的判定等知識,解題的關鍵是熟練掌握五種基本作圖,屬于中考常考題型.22、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 社區水資源保護宣傳考核試卷
- 印刷機技術創新展望考核試卷
- 遼寧省錦州市第七中學2024-2025學年初三下學期3月第二次診斷性檢測試題語文試題含解析
- 南京科技職業學院《中藥學》2023-2024學年第一學期期末試卷
- 山西財貿職業技術學院《醫學生理學》2023-2024學年第二學期期末試卷
- 江西省廬山市2024-2025學年初三下學期精英聯賽語文試題含解析
- 遼寧稅務高等專科學校《運動處方與實踐》2023-2024學年第二學期期末試卷
- 山西青年職業學院《大學生創新創業和就業指導》2023-2024學年第二學期期末試卷
- 江蘇海洋大學《村鎮規劃與建設實踐》2023-2024學年第二學期期末試卷
- 吉林省吉林地區普通高中友好學校聯合體第三十一屆2024-2025學年高三第二次適應性測試歷史試題含解析
- 基于深度學習的圖像修復算法研究
- 《隧道防火保護板系統技術規程》
- 2025超市出兌合同書模板
- 《基于寧德時代的財務報表的公司財務分析》4100字(論文)
- 湖南省長沙市雅禮實驗中學-主題班會-《陽光心態美麗青春》【課件】
- 提高單病種上報率
- 海洋機器人與人工智能知到智慧樹章節測試課后答案2024年秋哈爾濱工程大學
- The+Person+I+respect+高考應用文寫作+導學案 高三上學期英語一輪復習專項
- 2025年中考考前物理押題密卷(河北卷)(考試版A4)
- 臨床護理實踐指南2024版
- 人教版七年級下冊數學第七章平面直角坐標系-測試題及答案
評論
0/150
提交評論