余弦定理、正弦定理(第1課時(shí))【 核心精講+備課精研+高效課堂 】 高一數(shù)學(xué) 課件(人教A版2019必修第二冊(cè))_第1頁(yè)
余弦定理、正弦定理(第1課時(shí))【 核心精講+備課精研+高效課堂 】 高一數(shù)學(xué) 課件(人教A版2019必修第二冊(cè))_第2頁(yè)
余弦定理、正弦定理(第1課時(shí))【 核心精講+備課精研+高效課堂 】 高一數(shù)學(xué) 課件(人教A版2019必修第二冊(cè))_第3頁(yè)
余弦定理、正弦定理(第1課時(shí))【 核心精講+備課精研+高效課堂 】 高一數(shù)學(xué) 課件(人教A版2019必修第二冊(cè))_第4頁(yè)
余弦定理、正弦定理(第1課時(shí))【 核心精講+備課精研+高效課堂 】 高一數(shù)學(xué) 課件(人教A版2019必修第二冊(cè))_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

數(shù)學(xué)6.4.3

余弦定理、正弦定理(第1課時(shí))同步精品課件學(xué)習(xí)目標(biāo)XUEXIMUBIAO問(wèn)題導(dǎo)入WENTIDAORU知識(shí)梳理ZHISHISHULI在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,則有知識(shí)點(diǎn)一余弦定理余弦定理語(yǔ)言敘述三角形中任何一邊的平方,等于______________________________________________________公式表達(dá)a2=

,b2=

,c2=________________推論cosA=

,cosB=

,cosC=___________其他兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍b2+c2-2bccosAa2+c2-2accosBa2+b2-2abcosC1.已知三角形的兩邊和它們的夾角,求三角形的第三邊和其他兩個(gè)角.2.已知三角形的三邊,求三角形的三個(gè)角.知識(shí)點(diǎn)二余弦定理可以用于兩類解三角形問(wèn)題一般地,把三角形的三個(gè)角A,B,C和它們的對(duì)邊a,b,c叫做三角形的

.已知三角形的幾個(gè)元素求其他元素的過(guò)程叫做

.知識(shí)點(diǎn)三解三角形元素解三角形題型探究TIXINGTANJIU一、已知兩邊及一角解三角形反思感悟已知三角形的兩邊及一角解三角形的方法已知三角形的兩邊及一角解三角形,必須先判斷該角是給出兩邊中一邊的對(duì)角,還是給出兩邊的夾角.若是給出兩邊的夾角,可以由余弦定理求第三邊;若是給出兩邊中一邊的對(duì)角,可以利用余弦定理建立一元二次方程,解方程求出第三邊.跟蹤訓(xùn)練1

已知在△ABC中,a=1,b=2,cosC=

,則c=

;sinA=

.解得c=2.二、已知三邊解三角形例2

在△ABC中,已知a=7,b=3,c=5,求最大角.解∵a>c>b,∴A為最大角.由余弦定理的推論,又∵0°<A<180°,∴A=120°,∴最大角A為120°.反思感悟三、利用余弦定理判斷三角形的形狀例3

在△ABC中,若acosB+acosC=b+c,試判斷該三角形的形狀.解由acosB+acosC=b+c并結(jié)合余弦定理,整理,得(b+c)(a2-b2-c2)=0.因?yàn)閎+c≠0,所以a2=b2+c2,故△ABC是直角三角形.反思感悟(1)利用三角形的邊角關(guān)系判斷三角形的形狀時(shí),需要從“統(tǒng)一”入手,即使用轉(zhuǎn)化思想解決問(wèn)題,一般有兩條思考路線①先化邊為角,再進(jìn)行三角恒等變換,求出三角之間的數(shù)量關(guān)系.②先化角為邊,再進(jìn)行代數(shù)恒等變換,求出三邊之間的數(shù)量關(guān)系.(2)判斷三角形的形狀時(shí),經(jīng)常用到以下結(jié)論①△ABC為直角三角形?a2=b2+c2或c2=a2+b2或b2=a2+c2.②△ABC為銳角三角形?a2+b2>c2,且b2+c2>a2,且c2+a2>b2.③△ABC為鈍角三角形?a2+b2<c2或b2+c2<a2或c2+a2<b2.④若sin2A=sin2B,則A=B或A+B=

.跟蹤訓(xùn)練3

隨堂演練SUITANGYANLIAN解析∵a>b>c,∴C為最小角且C為銳角,課堂小結(jié)KE

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論