2023屆四川省德陽市德陽中學九年級數學第一學期期末學業質量監測模擬試題含解析_第1頁
2023屆四川省德陽市德陽中學九年級數學第一學期期末學業質量監測模擬試題含解析_第2頁
2023屆四川省德陽市德陽中學九年級數學第一學期期末學業質量監測模擬試題含解析_第3頁
2023屆四川省德陽市德陽中學九年級數學第一學期期末學業質量監測模擬試題含解析_第4頁
2023屆四川省德陽市德陽中學九年級數學第一學期期末學業質量監測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題3分,共30分)1.如圖,AB是⊙O的直徑,弦CD交AB于點E,且AE=CD=8,∠BAC=∠BOD,則⊙O的半徑為A. B.5 C.4 D.32.下列事件是隨機事件的是()A.三角形內角和為度 B.測量某天的最低氣溫,結果為C.買一張彩票,中獎 D.太陽從東方升起3.如圖,轉盤的紅、黃、藍、紫四個扇形區域的圓心角分別記為,,,.自由轉動轉盤,則下面說法錯誤的是()A.若,則指針落在紅色區域的概率大于0.25B.若,則指針落在紅色區域的概率大于0.5C.若,則指針落在紅色或黃色區域的概率和為0.5D.若,則指針落在紅色或黃色區域的概率和為0.54.計算的結果是()A.-3 B.9 C.3 D.-95.已知在Rt△ABC中,∠A=90°,AB=3,BC=5,則cosB的值是()A. B. C. D.6.如圖,的直徑,弦于.若,則的長是()A. B. C. D.7.矩形的周長為12cm,設其一邊長為xcm,面積為ycm2,則y與x的函數關系式及其自變量x的取值范圍均正確的是()A.y=﹣x2+6x(3<x<6) B.y=﹣x2+12x(0<x<12)C.y=﹣x2+12x(6<x<12) D.y=﹣x2+6x(0<x<6)8.點A(﹣5,4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.一個圓錐的側面積是底面積的4倍,則圓錐側面展開圖的扇形的圓心角是A.60° B.90° C.120° D.180°10.關于x的一元二次方程x2﹣x+sinα=0有兩個相等的實數根,則銳角α等于()A.15° B.30° C.45° D.60°二、填空題(每小題3分,共24分)11.如圖,已知△ABC是面積為的等邊三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC與DE相交于點F,則△AEF的面積等于_____(結果保留根號).12.已知MAX(a,b)=a,其中a>b如果MAX(,0)=0,那么x的取值范圍為__________13.如圖,菱形ABCD的對角線AC與BD相交于點O,AC=6,BD=8,那么菱形ABCD的面積是____.14.若圓錐的底面圓半徑為,圓錐的母線長為,則圓錐的側面積為______.15.把函數y=x2的圖象向右平移2個單位長度,再向下平移1個單位長度,得到函數____的圖象.16.拋物線y=(x+2)2+1的頂點坐標為_____.17.如果△ABC∽△DEF,且△ABC的三邊長分別為4、5、6,△DEF的最短邊長為12,那么△DEF的周長等于_____.18.關于的一元二次方程有兩個不相等的實數根,則的取值范圍是_________.三、解答題(共66分)19.(10分)如圖①,拋物線y=x2﹣(a+1)x+a與x軸交于A、B兩點(點A位于點B的左側),與y軸交于點C.已知△ABC的面積為1.(1)求這條拋物線相應的函數表達式;(2)在拋物線上是否存在一點P,使得∠POB=∠CBO,若存在,請求出點P的坐標;若不存在,請說明理由;(3)如圖②,M是拋物線上一點,N是射線CA上的一點,且M、N兩點均在第二象限內,A、N是位于直線BM同側的不同兩點.若點M到x軸的距離為d,△MNB的面積為2d,且∠MAN=∠ANB,求點N的坐標.20.(6分)(1)(x-5)2-9=0(2)x2+4x-2=021.(6分)定義:如果三角形的兩個內角與滿足,那么稱這樣的三角形為“類直角三角形”.嘗試運用(1)如圖1,在中,,,,是的平分線.①證明是“類直角三角形”;②試問在邊上是否存在點(異于點),使得也是“類直角三角形”?若存在,請求出的長;若不存在,請說明理由.類比拓展(2)如圖2,內接于,直徑,弦,點是弧上一動點(包括端點,),延長至點,連結,且,當是“類直角三角形”時,求的長.22.(8分)哈爾濱市教育局以冰雪節為契機,在全市校園內開展多姿多彩的冰雪活動.某校為激發學生參與冰雪體育活動熱情,開設了“滑冰、抽冰尜、冰球、冰壺、雪地足球”五個冰雪項目,并開展了以“我最喜歡的冰雪項目”為主題的調查活動,圍繞“在滑冰、抽冰尜、冰球、冰壺、雪地足球中,你最喜歡的冰雪項目是什么?(每名學生必選且只選一個)”的問題在全校范圍內隨機抽取了部分學生進行問卷調查,根據調查結果繪制了如圖所示的不完整的統計圖.請根據統計圖的信息回答下列問題:(1)本次調查共抽取了多少名學生?(2)求本次調查中,最喜歡冰球項目的人數,并補全條形統計圖;(3)若該中學共有1800名學生,請你估計該中學最喜歡雪地足球的學生約有多少名.23.(8分)如圖,AB是⊙O的直徑,點C,D在圓上,且四邊形AOCD是平行四邊形,過點D作⊙O的切線,分別交OA的延長線與OC的延長線于點E,F,連接BF.(1)求證:BF是⊙O的切線;(2)已知圓的半徑為1,求EF的長.24.(8分)現有3個型號相同的杯子,其中A等品2個,B等品1個,從中任意取1個杯子,記下等級后放回,第二次再從中取1個杯子,(1)用恰當的方法列舉出兩次取出杯子所有可能的結果;(2)求兩次取出至少有一次是B等品杯子的概率.25.(10分)在平行四邊形ABCD中,點E是AD邊上的點,連接BE.(1)如圖1,若BE平分∠ABC,BC=8,ED=3,求平行四邊形ABCD的周長;(2)如圖2,點F是平行四邊形外一點,FB=CD.連接BF、CF,CF與BE相交于點G,若∠FBE+∠ABC=180°,點G是CF的中點,求證:2BG+ED=BC.26.(10分)如圖,有一路燈桿AB(底部B不能直接到達),在燈光下,小明在點D處測得自己的影長DF=3m,沿BD方向到達點F處再測得自己得影長FG=4m,如果小明的身高為1.6m,求路燈桿AB的高度.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】試題分析:∵∠BAC=∠BOD,∴.∴AB⊥CD.∵AE=CD=8,∴DE=CD=1.設OD=r,則OE=AE﹣r=8﹣r,在RtODE中,OD=r,DE=1,OE=8﹣r,∴OD2=DE2+OE2,即r2=12+(8﹣r)2,解得r=2.故選B.2、C【分析】一定發生或是不發生的事件是確定事件,可能發生也可能不發生的事件是隨機事件,根據定義判斷即可.【詳解】A.該事件不可能發生,是確定事件;B.該事件不可能發生,是確定事件;C.該事件可能發生,是隨機事件;D.該事件一定發生,是確定事件.故選:C.【點睛】此題考查事件的分類,正確理解確定事件和隨機事件的區別并熟練解題是關鍵.3、C【分析】根據概率公式計算即可得到結論.【詳解】解:A、∵α>90°,,故A正確;B、∵α+β+γ+θ=360°,α>β+γ+θ,,故B正確;C、∵α-β=γ-θ,

∴α+θ=β+γ,∵α+β+γ+θ=360°,

∴α+θ=β+γ=180°,∴指針落在紅色或紫色區域的概率和為0.5,故C錯誤;

D、∵γ+θ=180°,

∴α+β=180°,∴指針落在紅色或黃色區域的概率和為0.5,故D正確;

故選:C.【點睛】本題考查了概率公式,熟練掌握概率公式是解題的關鍵.4、C【解析】直接計算平方即可.【詳解】故選C.【點睛】本題考查了二次根號的平方,比較簡單.5、A【解析】根據余弦函數的定義即可求解.【詳解】解:∵在△ABC中,∠A=90°,AB=3,BC=5,∴cosB==.故選A.【點睛】本題主要考查了余弦函數的定義,在直角三角形中,余弦為鄰邊比斜邊,解決本題的關鍵是要熟練掌握余弦的定義.6、C【分析】先根據線段的比例、直徑求出OC、OP的長,再利用勾股定理求出CP的長,然后根據垂徑定理即可得.【詳解】如圖,連接OC直徑在中,弦于故選:C.【點睛】本題考查了勾股定理、垂徑定理等知識點,屬于基礎題型,掌握垂徑定理是解題關鍵.7、D【分析】已知一邊長為xcm,則另一邊長為(6-x)cm,根據矩形的面積公式即可解答.【詳解】解:已知一邊長為xcm,則另一邊長為(6-x)cm.

則y=x(6-x)化簡可得y=-x2+6x,(0<x<6),

故選:D.【點睛】此題主要考查了根據實際問題列二次函數關系式的知識,解題的關鍵是用x表示出矩形的另一邊,此題難度一般.8、B【分析】根據象限內點的坐標特點即可解答.【詳解】點A(﹣5,4)所在的象限是第二象限,故選:B.【點睛】此題考查象限內點的坐標,熟記每個象限及坐標軸上點的坐標特點是解題的關鍵.9、B【解析】試題分析:設母線長為R,底面半徑為r,∴底面周長=2πr,底面面積=πr2,側面面積=πrR,∵側面積是底面積的4倍,∴4πr2=πrR.∴R=4r.∴底面周長=πR.∵圓錐的底面周長等于它的側面展開圖的弧長,∴設圓心角為n°,有,∴n=1.故選B.10、B【解析】解:∵關于x的一元二次方程有兩個相等的實數根,∴△=,解得:sinα=,∵α為銳角,∴α=30°.故選B.二、填空題(每小題3分,共24分)11、【分析】如圖,過點F作FH⊥AE交AE于H,過點C作CM⊥AB交AB于M,根據等邊三角形的性質可求出AB的長,根據相似三角形的性質可得△ADE是等邊三角形,可得出AE的長,根據角的和差關系可得∠EAF=∠BAD=45°,設AH=HF=x,利用∠EFH的正確可用x表示出EH的長,根據AE=EH+AH列方程可求出x的值,根據三角形面積公式即可得答案.【詳解】如圖,過點F作FH⊥AE交AE于H,過點C作CM⊥AB交AB于M,∵△ABC是面積為的等邊三角形,CM⊥AB,∴×AB×CM=,∠BCM=30°,BM=AB,BC=AB,∴CM==,∴×AB×=,解得:AB=2,(負值舍去)∵△ABC∽△ADE,△ABC是等邊三角形,∴△ADE是等邊三角形,∠CAB=∠EAD=60°,∠E=60°,∴∠EAF+∠FAD=∠FAD+BAD=60°,∵∠BAD=45°,∴∠EAF=∠BAD=45°,∵FH⊥AE,∴∠AFH=45°,∠EFH=30°,∴AH=HF,設AH=HF=x,則EH=xtan30°=x.∵AB=2AD,AD=AE,∴AE=AB=1,∴x+x=1,解得x=.∴S△AEF=×1×=.故答案為:.【點睛】本題考查了相似三角形的性質,等邊三角形的性質,銳角三角函數,根據相似三角形的性質得出△ADE是等邊三角形、熟練掌握等邊三角形的性質并熟記特殊角的三角函數值是解題關鍵.12、0﹤x﹤1【分析】由題意根據定義得出x2-x<0,通過作出函數y=x2-x的圖象,根據圖象即可求得x的取值范圍.【詳解】解:由題意可知x2-x<0,畫出函數y=x2-x的圖象如圖:由圖象可知x2-x<0的取值范圍為0<x<1.故答案為:0<x<1.【點睛】本題主要考查二次函數的性質,解題的關鍵是理解新定義并根據新定義列出關于x的不等式運用數形結合思維分析.13、1【分析】根據菱形的面積公式即可求解.【詳解】∵菱形ABCD的對角線AC與BD相交于點O,AC=6,BD=8,∴菱形ABCD的面積為AC×BD=×6×8=1,故答案為:1.【點睛】此題主要考查菱形面積的求解,解題的關鍵是熟知其面積公式.14、【分析】根據圓錐的側面積公式:S側=代入數據計算即可.【詳解】解:圓錐的側面積=.故答案為:【點睛】本題考查了圓錐的側面積公式,屬于基礎題型,熟練掌握計算公式是解題關鍵.15、y=(x-2)2-1【解析】試題解析:把函數的圖像向右平移個單位長度,再向下平移個單位長度,得到函數故答案為點睛:二次函數圖象的平移規律:左加右減,上加下減.16、(﹣2,1)【分析】根據題目中二次函數的頂點式可以直接寫出它的頂點坐標.【詳解】由拋物線的頂點坐標可知,拋物線y=(x+2)2+1的頂點坐標是(﹣2,1).故答案為:(﹣2,1).【點睛】本題考查二次函數的性質,解答本題的關鍵是由頂點式可以直接寫出二次函數的頂點坐標.17、1【分析】根據題意求出△ABC的周長,根據相似三角形的性質列式計算即可.【詳解】解:設△DEF的周長別為x,△ABC的三邊長分別為4、5、6,∴△ABC的周長=4+5+6=15,∵△ABC∽△DEF,∴,解得,x=1,故答案為1.【點睛】本題考查的是相似三角形的性質,掌握相似三角形的周長比等于相似比是解題的關鍵.18、【分析】方程有兩個不相等的實數根,則>2,由此建立關于k的不等式,然后可以求出k的取值范圍.【詳解】解:由題意知,=36-36k>2,

解得k<1.

故答案為:k<1.【點睛】本題考查了一元二次方程根的情況與判別式的關系:(1)>2?方程有兩個不相等的實數根;(2)=2?方程有兩個相等的實數根;(3)<2?方程沒有實數根.同時注意一元二次方程的二次項系數不為2.三、解答題(共66分)19、(1)y=x2+2x﹣3;(2)存在,點P坐標為或;(3)點N的坐標為(﹣4,1)【分析】(1)分別令y=0,x=0,可表示出A、B、C的坐標,從而表示△ABC的面積,求出a的值繼而即可得二次函數解析式;(2)如圖①,當點P在x軸上方拋物線上時,平移BC所在的直線過點O交x軸上方拋物線于點P,則有BC∥OP,此時∠POB=∠CBO,聯立拋物線得解析式和OP所在直線的解析式解方程組即可求解;當點P在x軸下方時,取BC的中點D,易知D點坐標為(,),連接OD并延長交x軸下方的拋物線于點P,由直角三角形斜邊中線定理可知,OD=BD,∠DOB=∠CBO即∠POB=∠CBO,聯立拋物線的解析式和OP所在直線的解析式解方程組即可求解.(3)如圖②,通過點M到x軸的距離可表示△ABM的面積,由S△ABM=S△BNM,可證明點A、點N到直線BM的距離相等,即AN∥BM,通過角的轉化得到AM=BN,設點N的坐標,表示出BN的距離可求出點N.【詳解】(1)當y=0時,x2﹣(a+1)x+a=0,解得x1=1,x2=a,當x=0,y=a∴點C坐標為(0,a),∵C(0,a)在x軸下方∴a<0∵點A位于點B的左側,∴點A坐標為(a,0),點B坐標為(1,0),∴AB=1﹣a,OC=﹣a,∵△ABC的面積為1,∴,∴a1=﹣3,a2=4(因為a<0,故舍去),∴a=﹣3,∴y=x2+2x﹣3;(2)設直線BC:y=kx﹣3,則0=k﹣3,∴k=3;①當點P在x軸上方時,直線OP的函數表達式為y=3x,則,∴,,∴點P坐標為;②當點P在x軸下方時,直線OP的函數表達式為y=﹣3x,則∴,,∴點P坐標為,綜上可得,點P坐標為或;(3)如圖,過點A作AE⊥BM于點E,過點N作NF⊥BM于點F,設AM與BN交于點G,延長MN與x軸交于點H;∵AB=4,點M到x軸的距離為d,∴S△AMB=∵S△MNB=2d,∴S△AMB=S△MNB,∴,∴AE=NF,∵AE⊥BM,NF⊥BM,∴四邊形AEFN是矩形,∴AN∥BM,∵∠MAN=∠ANB,∴GN=GA,∵AN∥BM,∴∠MAN=∠AMB,∠ANB=∠NBM,∴∠AMB=∠NBM,∴GB=GM,∴GN+GB=GA+GM即BN=MA,在△AMB和△NBM中∴△AMB≌△NBM(SAS),∴∠ABM=∠NMB,∵OA=OC=3,∠AOC=90°,∴∠OAC=∠OCA=45°,又∵AN∥BM,∴∠ABM=∠OAC=45°,∴∠NMB=45°,∴∠ABM+∠NMB=90°,∴∠BHM=90°,∴M、N、H三點的橫坐標相同,且BH=MH,∵M是拋物線上一點,∴可設點M的坐標為(t,t2+2t﹣3),∴1﹣t=t2+2t﹣3,∴t1=﹣4,t2=1(舍去),∴點N的橫坐標為﹣4,可設直線AC:y=kx﹣3,則0=﹣3k﹣3,∴k=﹣1,∴y=﹣x﹣3,當x=﹣4時,y=﹣(﹣4)﹣3=1,∴點N的坐標為(﹣4,1).【點睛】本題主要考查二次函數的圖象與性質,還涉及到全等三角形的判定及其性質、三角形面積公式等知識點,綜合性較強,解題的關鍵是熟練掌握二次函數的圖象與性質.20、(1)x=8或x=1;(1)x=-1或x=--1【分析】(1)先移項,利用直接開平方法解方程;

(1)利用配方法解方程即可求解.【詳解】解:(1)(x-5)1-9=0(x-5)1=9∴x-5=3或x-5=-3∴x=8或x=1;(1)x1+4x-1=0(x1+4x+4)-6=0(x+1)1=6∴x+1=或x+1=-∴x=-1或x=--1.【點睛】本題考查一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據方程的特點靈活選用合適的方法.21、(1)①證明見解析,②存在,;(2)或.【分析】(1)①證明∠A+2∠ABD=90°即可解決問題.

②如圖1中,假設在AC邊設上存在點E(異于點D),使得△ABE是“類直角三角形”.證明△ABC∽△BEC,可得,由此構建方程即可解決問題.

(2)分兩種情形:①如圖2中,當∠ABC+2∠C=90°時,作點D關于直線AB的對稱點F,連接FA,FB.則點F在⊙O上,且∠DBF=∠DOA.

②如圖3中,由①可知,點C,A,F共線,當點E與D共線時,由對稱性可知,BA平分∠FBC,可證∠C+2∠ABC=90°,利用相似三角形的性質構建方程即可解決問題.【詳解】(1)①證明:如圖1中,∵是的角平分線,∴,∵,∴,∴,∴為“類直角三角形”.②如圖1中,假設在邊設上存在點(異于點),使得是“類直角三角形”.在中,∵,,∴,∵,∴,∵∴,∴,∴,∴,(2)∵是直徑,∴,∵,,∴,①如圖2中,當時,作點關于直線的對稱點,連接,.則點在上,且,∵,且,∴,∴,,共線,∵∴,∴,∴,即∴.②如圖3中,由①可知,點,,共線,當點與共線時,由對稱性可知,平分,∴,∵,,∴,∴,即,∴,且中解得綜上所述,當是“類直角三角形”時,的長為或.【點睛】本題考查了相似三角形的判定和性質,“類直角三角形”的定義等知識,解題的關鍵是理解題意,學會用分類討論的思想思考問題,學會利用參數構建方程解決問題,屬于中考壓軸題.22、(1)60;(2)12,圖見解析;(3)450【分析】(1)用滑冰的人數除以滑冰的比例,即可解得本次調查共抽取的學生人數.(2)用總人數減去其他各項的人數,即可得到最喜歡冰球項目的人數,補全條形統計圖.(3)用總人數乘以最喜歡雪地足球的學生的比例,即可進行估算.【詳解】解:(1)(人)∴本次抽樣調查共抽取了60名學生(2)(人)∴本次調查中,最喜歡冰球項目的學生人數為12人.補全條形統計圖(3)(人)∴由樣本估計總體得該中學最喜歡雪地足球的學生約有450人.【點睛】本題考查了概率統計的問題,掌握條形圖的性質、餅狀圖的性質是解題的關鍵.23、(1)證明見解析;(2)EF=2.【分析】(1)、先證明四邊形AOCD是菱形,從而得到∠AOD=∠COD=60°,再根據切線的性質得∠FDO=90°,接著證明△FDO≌△FBO得到∠ODF=∠OBF=90°,然后根據切線的判定定理即可得到結論;(2)、在Rt△OBF中,利用60度的正切的定義求解.【詳解】(1)、連結OD,如圖,∵四邊形AOCD是平行四邊形,而OA=OC,∴四邊形AOCD是菱形,∴△OAD和△OCD都是等邊三角形,∴∠AOD=∠COD=60°,∴∠FOB=60°,∵EF為切線,∴OD⊥EF,∴∠FDO=90°,在△FDO和△FBO中,∴△FDO≌△FBO,∴∠ODF=∠OBF=90°,∴OB⊥BF,∴BF是⊙O的切線;(2)、在Rt△OBF中,∵∠FOB=60°,而tan∠FOB=,∴BF=1×tan60°=.∵∠E=30°,∴EF=2BF=2.考點:(1)、切線的判定與性質;(2)、平行四邊形的性質24、(1)見解析;(2).【分析】(1)根據已知條件畫出樹狀圖得出所有等情況數即可;(2)找出兩次取出至少有一次是B等品杯子的情況數,再根據概率公式即可得出答案.【詳解】解:(1)根據題意畫樹狀圖如下:由圖可知,共有9中等可能情況數;(2)∵共有9中等可能情況數,其中兩次取出至少有一次是B等品杯子的有5種,∴兩次取出至少有一次是B等品杯子的概率是.【點睛】本題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比。25、(1)26;(2)見解析【分析】(1)由平行四邊形的性質得出AD=BC=8,AB=CD,AD∥BC,由平行線的性質得出∠AEB=∠CBE,由BE平分∠ABC,得出∠ABE=∠CBE,推出∠ABE=∠AEB,則AB=AE,AE=AD﹣ED=BC﹣ED=5,得出AB=5,即可得出結果;(2)連接CE,過點C作CK∥BF交BE于K,則∠FBG=∠CKG,由點G是CF的中點,得出FG=CG,由AAS證得△FBG≌△CKG,得出BG=KG,CK=BF=CD,由平行四邊形的性質得出∠ABC=∠D,∠BAE+∠D=180

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論