【優化方案】高中數學 第1章1.3.4循環語句課件 蘇教必修3_第1頁
【優化方案】高中數學 第1章1.3.4循環語句課件 蘇教必修3_第2頁
【優化方案】高中數學 第1章1.3.4循環語句課件 蘇教必修3_第3頁
【優化方案】高中數學 第1章1.3.4循環語句課件 蘇教必修3_第4頁
【優化方案】高中數學 第1章1.3.4循環語句課件 蘇教必修3_第5頁
已閱讀5頁,還剩25頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1.3.4循環語句學習目標1.理解三種結構的循環語句;2.會用三種循環語句描述算法.

課堂互動講練知能優化訓練循環語句課前自主學案課前自主學案溫故夯基1.條件語句的一般格式是什么?IfAThenBElse

CEndIf2.如何應用條件語句完成復雜的算法?在復雜算法中,有時需要對按條件要求執行的語句(特別是Else后的語句體)繼續按照另一條件繼續判斷.這時可再利用一個條件語句完成這一要求,即條件語句的嵌套.知新益能三種循環語句當型語句直到型語句For語句一般形式_________循環體EndWhileDo

循環體__________EndDoForIFrom“初值”To“終值”Step“步長”

循環體EndForWhilepUntilp

當型語句直到型語句For語句執行步驟先判斷條件的真假,如果條件符合,則執行While和EndWhile之間的循環體,然后再檢查上述條件,如果_____________,再次執行循環體,這個過程反復進行,直到某一次_____________時為止,這時不再執行循環體,跳出循環體,執行EndWhile后面的語句.先執行一次____和_____之間的循環體,再判斷Until后的條件是否符合,如果不符合,繼續____________,然后再檢查上述條件,如果仍不符合,再次____________直到__________為止.這時不再執行循環體,跳出循環體執行EndDo語句后面的語句同當型循環適用范圍循環次數不能確定循環次數不能確定循環次數已經確定條件仍符合條件不符合DoUntil執行循環體執行循環體條件符合當型循環語句(While…EndWhile)與直到型循環語句(Do…Until…EndDo)在執行循環體的先后上有何區別?提示:①當型循環先判斷條件后執行,循環體可能一次也不執行;②直到型循環先執行一次循環體再判斷條件,循環體至少執行一次;③對同一個算法,當型循環語句與直到型循環語句中的判斷條件是相反的.問題探究課堂互動講練考點突破當型循環語句考點一(1)執行當型循環語句時,先判斷條件,再執行循環體,然后再判斷條件,執行循環體,如此反復,直到條件不滿足;(2)當型循環語句中的條件是指循環體的條件,滿足此條件時,執行循環體,不滿足時,則執行循環結構后面的語句;(3)當型循環語句由于先條件,再循環體,因此,循環體可能一次不執行就退出循環結構.求平方值小于1000的最大整數,試畫出流程圖并寫出偽代碼.【思路點撥】我們可以從最小的正整數1開始檢驗其平方值是否小于1000,若小于1000,將其增加1,再進行檢驗,直到平方值大于或等于1000,結束檢驗.例1【解】流程圖如圖所示:偽代碼碼如下下:i←1Whilei2<1000i←i+1EndWhilei←i-1PrintiEnd【名師點點評】(1)當型循(2)判斷條件往往是控制循環次數的變量.自我挑挑戰1一球從從100m的高度度落下下,每每次落落地后后又反反彈回回落地地前高高度的的一半半,再再落下下,在在第10次落地地時,,小球球共經經過多多少路路程??請設設計解解決此此問題題的偽偽代碼碼.直到型循環語句考點二(1)執行直直到型型語句句時,,先執執行循循環體體,再再判斷斷條件件.然然后再再循環環體,,再條條件,,反復復執行行,直直至條條件滿滿足..(2)直到型型語句句中的的條件件是循循環結結束的的條件件,滿滿足此此條件件時,,執行行循環環結構構后面面的語語句,,不滿滿足時時才執執行循循環體體.(3)在直到到型語語句中中,由由于先先循環環體,,再條條件,,因此此,在在任何何一個個直到到型語語句中中,循循環體體至少少要執執行一一次..(4)當型循循環語語句與與直到到型循循環語語句可可以相相互轉(本題滿分14分)寫出計算12+32+52+…+9992的偽代碼,,并畫出相相應的流程程圖.例2【規范解答答】算法分析析:由題意知知各項指指數相同同,底數數相差2,可以借借助于循循環設計計算法..因為循循環次數數是確定定的,流程圖如下:偽代碼如下:【名師點評評】(1)Until后的控制制循環次次數的條條件是本本題易錯錯點.(2)循環次數數的控制制往往是是判斷條條件,在在循環體體內要有有控制條條件的改改變,否否則會陷陷入死循循環.(3)控制循環環次數的的變量要要綜合考考慮初始始化時和和Until后兩處..自我挑戰戰2已知函數數y=x3+3x2-24x+30,設計一一個算法法,連續續輸入自自變量的的11個取值,,輸出相相應的函函數值,,畫出相相應的流流程圖,,寫出偽偽代碼..解:算法法如下::S1輸入x;S2y←x3+3x2-24x+30;S3輸出y;S4n←n+1;S5如果n>11,那么轉轉S6,否則轉S1;S6結束.流程圖如如圖所示示.偽代碼如如下:n←1DoReadxy←x3+3x2-24x+30Printyn←n+1Untiln>11EndDoEndFor語句考點三(1)““For”語句常常常用來處處理一些些需要有有規律重重復的計計算問題題,如累累加求和和、累乘乘求積等等.(2)““For”語句的功功能是::將初值值賦給循循環變量量,“記下”終值和步步長.執執行循環環體后自自動將循循環變量量增加一一個步長長,接著著判斷增增值后的的循環變變量是否否超過終終值,如如果不超超過終值值,繼續續執行循循環體;;否則,,結束循循環,執執行EndFor語句的后后續語句句.(3)在“For””語句中,,如果省省略“Step‘步長’”,那么重重復循環環時,I的值每次次增加1.例3【解】流程圖如如下:For語句描述述算法為為:S←0ForiFrom1

S←S+EndForPrintS【名師點評評】解決此類類問題,,應從確確定循環環的次數數以及循循環變量量的初值值、步長長以及終終值入手手進行分分析,只只有確定定了循環環次數,,才能利利用For循環,同同時要注注意設定定好循環環變量的的初值、、步長和和終值,,避免出出現多一一次循環環或少一一次循環環的情況況.解:算法法流程圖圖如圖所所示:For語句描述述算法為為:S=0ForiFrom2To1000Step2S←S+EndForPrintS1.使用循循環語句句的三種種格式編編寫循環環語句程程序時,,應嚴格格按照它它們的格格式編寫寫.2.用While循環編寫寫程序時時,一定定要注意意表達式式的寫法法,當表表達

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論