2022-2023學年山西省呂梁市泰化中學高三一診考試數學試卷含解析_第1頁
2022-2023學年山西省呂梁市泰化中學高三一診考試數學試卷含解析_第2頁
2022-2023學年山西省呂梁市泰化中學高三一診考試數學試卷含解析_第3頁
2022-2023學年山西省呂梁市泰化中學高三一診考試數學試卷含解析_第4頁
2022-2023學年山西省呂梁市泰化中學高三一診考試數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某設備使用年限x(年)與所支出的維修費用y(萬元)的統計數據分別為,,,,由最小二乘法得到回歸直線方程為,若計劃維修費用超過15萬元將該設備報廢,則該設備的使用年限為()A.8年 B.9年 C.10年 D.11年2.已知偶函數在區間內單調遞減,,,,則,,滿足()A. B. C. D.3.下圖是來自古希臘數學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.4.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.5.一個由兩個圓柱組合而成的密閉容器內裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則()A. B. C. D.6.三棱錐中,側棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.7.函數(),當時,的值域為,則的范圍為()A. B. C. D.8.以,為直徑的圓的方程是A. B.C. D.9.甲在微信群中發了一個6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領到整數元,且每人至少領到1元,則乙獲得“最佳手氣”(即乙領到的錢數多于其他任何人)的概率是()A. B. C. D.10.馬林●梅森是17世紀法國著名的數學家和修道士,也是當時歐洲科學界一位獨特的中心人物,梅森在歐幾里得、費馬等人研究的基礎上對2p﹣1作了大量的計算、驗證工作,人們為了紀念梅森在數論方面的這一貢獻,將形如2P﹣1(其中p是素數)的素數,稱為梅森素數.若執行如圖所示的程序框圖,則輸出的梅森素數的個數是()A.3 B.4 C.5 D.611.在區間上隨機取一個實數,使直線與圓相交的概率為()A. B. C. D.12.已知等差數列{an},則“a2>a1”是“數列{an}為單調遞增數列”的()A.充分而不必要條件B.必要而不充分條件C.充分必要條件D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.“直線l1:與直線l2:平行”是“a=2”的_______條件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”).14.命題“”的否定是______.15.若函數為奇函數,則_______.16.某公園劃船收費標準如表:某班16名同學一起去該公園劃船,若每人劃船的時間均為1小時,每只租船必須坐滿,租船最低總費用為______元,租船的總費用共有_____種可能.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)若,不等式的解集;(2)若,求實數的取值范圍.18.(12分)11月,2019全國美麗鄉村籃球大賽在中國農村改革的發源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.(1)經過1輪投球,記甲的得分為,求的分布列;(2)若經過輪投球,用表示經過第輪投球,累計得分,甲的得分高于乙的得分的概率.①求;②規定,經過計算機計算可估計得,請根據①中的值分別寫出a,c關于b的表達式,并由此求出數列的通項公式.19.(12分)某芯片公司對今年新開發的一批5G手機芯片進行測評,該公司隨機調查了100顆芯片,并將所得統計數據分為五個小組(所調查的芯片得分均在內),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評測分數的平均數(同一組中的每個數據可用該組區間的中點值代替).(2)芯片公司另選100顆芯片交付給某手機公司進行測試,該手機公司將每顆芯片分別裝在3個工程手機中進行初測。若3個工程手機的評分都達到11萬分,則認定該芯片合格;若3個工程手機中只要有2個評分沒達到11萬分,則認定該芯片不合格;若3個工程手機中僅1個評分沒有達到11萬分,則將該芯片再分別置于另外2個工程手機中進行二測,二測時,2個工程手機的評分都達到11萬分,則認定該芯片合格;2個工程手機中只要有1個評分沒達到11萬分,手機公司將認定該芯片不合格.已知每顆芯片在各次置于工程手機中的得分相互獨立,并且芯片公司對芯片的評分方法及標準與手機公司對芯片的評分方法及標準都一致(以頻率作為概率).每顆芯片置于一個工程手機中的測試費用均為300元,每顆芯片若被認定為合格或不合格,將不再進行后續測試,現手機公司測試部門預算的測試經費為10萬元,試問預算經費是否足夠測試完這100顆芯片?請說明理由.20.(12分)設函數,是函數的導數.(1)若,證明在區間上沒有零點;(2)在上恒成立,求的取值范圍.21.(12分)在如圖所示的四棱錐中,四邊形是等腰梯形,,,平面,,.(1)求證:平面;(2)已知二面角的余弦值為,求直線與平面所成角的正弦值.22.(10分)設函數.(1)求的值;(2)若,求函數的單調遞減區間.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據樣本中心點在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計第年維修費用超過15萬元.故選:D.【點睛】本題考查回歸直線過樣本中心點、以及回歸方程的應用,屬于基礎題.2、D【解析】

首先由函數為偶函數,可得函數在內單調遞增,再由,即可判定大小【詳解】因為偶函數在減,所以在上增,,,,∴.故選:D【點睛】本題考查函數的奇偶性和單調性,不同類型的數比較大小,應找一個中間數,通過它實現大小關系的傳遞,屬于中檔題.3、D【解析】

根據以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進而求得所求表達式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D【點睛】本小題主要考查同角三角函數的基本關系式,考查二倍角公式,屬于基礎題.4、D【解析】

設,,作為一個基底,表示向量,,,然后再用數量積公式求解.【詳解】設,,所以,,,所以.故選:D【點睛】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎題.5、B【解析】

根據空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B【點睛】本題考查圓柱的體積,屬于基礎題.6、B【解析】由題,側棱底面,,,,則根據余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點睛:本題考查的知識點是球內接多面體,熟練掌握球的半徑公式是解答的關鍵.7、B【解析】

首先由,可得的范圍,結合函數的值域和正弦函數的圖像,可求的關于實數的不等式,解不等式即可求得范圍.【詳解】因為,所以,若值域為,所以只需,∴.故選:B【點睛】本題主要考查三角函數的值域,熟悉正弦函數的單調性和特殊角的三角函數值是解題的關鍵,側重考查數學抽象和數學運算的核心素養.8、A【解析】

設圓的標準方程,利用待定系數法一一求出,從而求出圓的方程.【詳解】設圓的標準方程為,由題意得圓心為,的中點,根據中點坐標公式可得,,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數法求圓的方程,解題的關鍵是假設圓的標準方程,建立方程組,屬于基礎題.9、B【解析】

將所有可能的情況全部枚舉出來,再根據古典概型的方法求解即可.【詳解】設乙,丙,丁分別領到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個,其中符合乙獲得“最佳手氣”的有3個,故所求概率為,故選:B.【點睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎題型.10、C【解析】

模擬程序的運行即可求出答案.【詳解】解:模擬程序的運行,可得:p=1,S=1,輸出S的值為1,滿足條件p≤7,執行循環體,p=3,S=7,輸出S的值為7,滿足條件p≤7,執行循環體,p=5,S=31,輸出S的值為31,滿足條件p≤7,執行循環體,p=7,S=127,輸出S的值為127,滿足條件p≤7,執行循環體,p=9,S=511,輸出S的值為511,此時,不滿足條件p≤7,退出循環,結束,故若執行如圖所示的程序框圖,則輸出的梅森素數的個數是5,故選:C.【點睛】本題主要考查程序框圖,屬于基礎題.11、D【解析】

利用直線與圓相交求出實數的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點睛】本題考查幾何概型概率的計算,同時也考查了利用直線與圓相交求參數,考查計算能力,屬于基礎題.12、C【解析】試題分析:根據充分條件和必要條件的定義進行判斷即可.解:在等差數列{an}中,若a2>a1,則d>0,即數列{an}為單調遞增數列,若數列{an}為單調遞增數列,則a2>a1,成立,即“a2>a1”是“數列{an}為單調遞增數列”充分必要條件,故選C.考點:必要條件、充分條件與充要條件的判斷.二、填空題:本題共4小題,每小題5分,共20分。13、必要不充分【解析】

先求解直線l1與直線l2平行的等價條件,然后進行判斷.【詳解】“直線l1:與直線l2:平行”等價于a=±2,故“直線l1:與直線l2:平行”是“a=2”的必要不充分條件.故答案為:必要不充分.【點睛】本題主要考查充分必要條件的判定,把已知條件進行等價轉化是求解這類問題的關鍵,側重考查邏輯推理的核心素養.14、,【解析】

根據特稱命題的否定為全稱命題得到結果即可.【詳解】解:因為特稱命題的否定是全稱命題,所以,命題,則該命題的否定是:,故答案為:,.【點睛】本題考查全稱命題與特稱命題的否定關系,屬于基礎題.15、-2【解析】

由是定義在上的奇函數,可知對任意的,都成立,代入函數式可求得的值.【詳解】由題意,的定義域為,,是奇函數,則,即對任意的,都成立,故,整理得,解得.故答案為:.【點睛】本題考查奇函數性質的應用,考查學生的計算求解能力,屬于基礎題.16、36010【解析】

列出所有租船的情況,分別計算出租金,由此能求出結果.【詳解】當租兩人船時,租金為:元,當租四人船時,租金為:元,當租1條四人船6條兩人船時,租金為:元,當租2條四人船4條兩人船時,租金為:元,當租3條四人船2條兩人船時,租金為:元,當租1條六人船5條2人船時,租金為:元,當租2條六人船2條2人船時,租金為:元,當租1條六人船1條四人船3條2人船時,租金為:元,當租1條六人船2條四人船1條2人船時,租金為:元,當租2條六人船1條四人船時,租金為:元,綜上,租船最低總費用為360元,租船的總費用共有10種可能.故答案為:360,10.【點睛】本小題主要考查分類討論的數學思想方法,考查實際應用問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)依題意可得,再用零點分段法分類討論可得;(2)依題意可得對恒成立,根據絕對值的幾何意義將絕對值去掉,分別求出解集,則兩解集的并集為,得到不等式即可解得;【詳解】解:(1)若,,則,即,當時,原不等式等價于,解得當時,原不等式等價于,解得,所以;當時,原不等式等價于,解得;綜上,原不等式的解集為;(2)即,得或,由解得,由解得,要使得的解集為,則解得,故的取值范圍是.【點睛】本題考查絕對值不等式的解法,著重考查等價轉化思想與分類討論思想的綜合應用,屬于中檔題.18、(1)分布列見解析;(2)①;②,.【解析】

(1)經過1輪投球,甲的得分的取值為,記一輪投球,甲投中為事件,乙投中為事件,相互獨立,計算概率后可得分布列;(2)由(1)得,由兩輪的得分可計算出,計算時可先計算出經過2輪后甲的得分的分布列(的取值為),然后結合的分布列和的分布可計算,由,代入,得兩個方程,解得,從而得到數列的遞推式,變形后得是等比數列,由等比數列通項公式得,然后用累加法可求得.【詳解】(1)記一輪投球,甲命中為事件,乙命中為事件,相互獨立,由題意,,甲的得分的取值為,,,,∴的分布列為:-101(2)由(1),,同理,經過2輪投球,甲的得分取值:記,,,則,,,,由此得甲的得分的分布列為:-2-1012∴,∵,,∴,,∴,代入得:,∴,∴數列是等比數列,公比為,首項為,∴.∴.【點睛】本題考查隨機變量的概率分布列,考查相互獨立事件同時發生的概率,考查由數列的遞推式求通項公式,考查學生的轉化與化歸思想,本題難點在于求概率分布列,特別是經過2輪投球后甲的得分的概率分布列,這里可用列舉法寫出各種可能,然后由獨立事件的概率公式計算出概率.19、(1)(2)預算經費不夠測試完這100顆芯片,理由見解析【解析】

(1)先求出,再利用頻率分布直方圖的平均數公式求這100顆芯片評測分數的平均數;(2)先求出每顆芯片的測試費用的數學期望,再比較得解.【詳解】(1)依題意,,故.又因為.所以,所求平均數為(萬分)(2)由題意可知,手機公司抽取一顆芯片置于一個工程機中進行檢測評分達到11萬分的概率.設每顆芯片的測試費用為X元,則X的可能取值為600,900,1200,1500,,,故每顆芯片的測試費用的數學期望為(元),因為,所以顯然預算經費不夠測試完這100顆芯片.【點睛】本題主要考查頻率分布直方圖的平均數的計算,考查離散型隨機變量的數學期望的計算,意在考查學生對這些知識的理解掌握水平.20、(1)證明見解析(2)【解析】

(1)先利用導數的四則運算法則和導數公式求出,再由函數的導數可知,函數在上單調遞增,在上單調遞減,而,,可知在區間上恒成立,即在區間上沒有零點;(2)由題意可將轉化為,構造函數,利用導數討論研究其在上的單調性,由,即可求出的取值范圍.【詳解】(1)若,則,,設,則,,,故函數是奇函數.當時,,,這時,又函數是奇函數,所以當時,.綜上,當時,函數單調遞增;當時,函數單調遞減.又,,故在區間上恒成立,所以在區間上沒有零點.(2),由,所以恒成立,若,則,設,.故當時,,又,所以當時,,滿足題意;當時,有,與條件矛盾,舍去;當時,令,則,又,故在區間上有無窮多個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論