




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個面所在的平面與直線相交的平面個數分別記為,則下列結論正確的是()A. B. C. D.2.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.33.已知,則()A.5 B. C.13 D.4.已知集合,集合,則A. B.或C. D.5.已知,,,是球的球面上四個不同的點,若,且平面平面,則球的表面積為()A. B. C. D.6.單位正方體ABCD-,黑、白兩螞蟻從點A出發沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設白、黑螞蟻都走完2020段后各自停止在正方體的某個頂點處,這時黑、白兩螞蟻的距離是()A.1 B. C. D.07.設,則()A. B. C. D.8.已知、分別是雙曲線的左、右焦點,過作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點、,過點作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.9.已知非零向量,滿足,,則與的夾角為()A. B. C. D.10.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.011.若復數滿足,則對應的點位于復平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點,則異面直線與所成角的余弦值為A.0 B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.在面積為的中,,若點是的中點,點滿足,則的最大值是______.14.已知是定義在上的偶函數,其導函數為.若時,,則不等式的解集是___________.15.在等比數列中,,則________.16.已知函數的圖象在處的切線斜率為,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)把的參數方程化為極坐標方程:(2)求與交點的極坐標.18.(12分)在國家“大眾創業,萬眾創新”戰略下,某企業決定加大對某種產品的研發投入.為了對新研發的產品進行合理定價,將該產品按事先擬定的價格試銷,得到一組檢測數據如表所示:試銷價格(元)產品銷量(件)已知變量且有線性負相關關系,現有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學的計算結果是正確的.(1)試判斷誰的計算結果正確?(2)若由線性回歸方程得到的估計數據與檢測數據的誤差不超過,則稱該檢測數據是“理想數據”,現從檢測數據中隨機抽取個,求“理想數據”的個數的分布列和數學期望.19.(12分)以直角坐標系的原點為極坐標系的極點,軸的正半軸為極軸.已知曲線的極坐標方程為,是上一動點,,點的軌跡為.(1)求曲線的極坐標方程,并化為直角坐標方程;(2)若點,直線的參數方程(為參數),直線與曲線的交點為,當取最小值時,求直線的普通方程.20.(12分)已知數列是各項均為正數的等比數列,,且,,成等差數列.(Ⅰ)求數列的通項公式;(Ⅱ)設,為數列的前項和,記,證明:.21.(12分)如圖,在中,,的角平分線與交于點,.(Ⅰ)求;(Ⅱ)求的面積.22.(10分)已知,且的解集為.(1)求實數,的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實數取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據題意,畫出幾何位置圖形,由圖形的位置關系分別求得的值,即可比較各選項.【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個面所在平面均相交,∴,∴結合四個選項可知,只有正確.故選:A.【點睛】本題考查了空間幾何體中直線與平面位置關系的判斷與綜合應用,對空間想象能力要求較高,屬于中檔題.2.D【解析】
利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應用,考查分析問題解決問題的能力,屬于基礎題.3.C【解析】
先化簡復數,再求,最后求即可.【詳解】解:,,故選:C【點睛】考查復數的運算,是基礎題.4.C【解析】
由可得,解得或,所以或,又,所以,故選C.5.A【解析】
由題意畫出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點G,連接AG,DG,則,,分別取與的外心E,F,分別過E,F作平面ABC與平面DBC的垂線,相交于O,則O為四面體的球心,由,得正方形OEGF的邊長為,則,四面體的外接球的半徑,球O的表面積為.故選A.【點睛】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.6.B【解析】
根據規則,觀察黑螞蟻與白螞蟻經過幾段后又回到起點,得到每爬1步回到起點,周期為1.計算黑螞蟻爬完2020段后實質是到達哪個點以及計算白螞蟻爬完2020段后實質是到達哪個點,即可計算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點,可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點;同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點,所以它們此時的距離為.故選B.【點睛】本題考查多面體和旋轉體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.7.D【解析】
結合指數函數及對數函數的單調性,可判斷出,,,即可選出答案.【詳解】由,即,又,即,,即,所以.故選:D.【點睛】本題考查了幾個數的大小比較,考查了指數函數與對數函數的單調性的應用,屬于基礎題.8.B【解析】
設點位于第二象限,可求得點的坐標,再由直線與直線垂直,轉化為兩直線斜率之積為可得出的值,進而可求得雙曲線的離心率.【詳解】設點位于第二象限,由于軸,則點的橫坐標為,縱坐標為,即點,由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.【點睛】本題考查雙曲線離心率的計算,解答的關鍵就是得出、、的等量關系,考查計算能力,屬于中等題.9.B【解析】
由平面向量垂直的數量積關系化簡,即可由平面向量數量積定義求得與的夾角.【詳解】根據平面向量數量積的垂直關系可得,,所以,即,由平面向量數量積定義可得,所以,而,即與的夾角為.故選:B【點睛】本題考查了平面向量數量積的運算,平面向量夾角的求法,屬于基礎題.10.B【解析】
根據題意可得,利用向量的數量積即可求解夾角.【詳解】因為即而所以夾角為故選:B【點睛】本題考查了向量數量積求夾角,需掌握向量數量積的定義求法,屬于基礎題.11.D【解析】
利用復數模的計算、復數的除法化簡復數,再根據復數的幾何意義,即可得答案;【詳解】,對應的點,對應的點位于復平面的第四象限.故選:D.【點睛】本題考查復數模的計算、復數的除法、復數的幾何意義,考查運算求解能力,屬于基礎題.12.B【解析】
根據題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由任意三角形面積公式與構建關系表示|AB||AC|,再由已知與平面向量的線性運算、平面向量數量積的運算轉化,最后由重要不等式求得最值.【詳解】由△ABC的面積為得|AB||AC|sin∠BAC=,所以|AB||AC|sin∠BAC=,①又,即|AB||AC|cos∠BAC=,②由①與②的平方和得:|AB||AC|=,又點M是AB的中點,點N滿足,所以,當且僅當時,取等號,即的最大值是為.故答案為:【點睛】本題考查平面向量中由線性運算表示未知向量,進而由重要不等式求最值,屬于中檔題.14.【解析】
構造,先利用定義判斷的奇偶性,再利用導數判斷其單調性,轉化為,結合奇偶性,單調性求解不等式即可.【詳解】令,則是上的偶函數,,則在上遞減,于是在上遞增.由得,即,于是,則,解得.故答案為:【點睛】本題考查了利用函數的奇偶性、單調性解不等式,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于較難題.15.1【解析】
設等比數列的公比為,再根據題意用基本量法求解公比,進而利用等比數列項之間的關系得即可.【詳解】設等比數列的公比為.由,得,解得.又由,得.則.故答案為:1【點睛】本題主要考查了等比數列基本量的求解方法,屬于基礎題.16.【解析】
先對函數f(x)求導,再根據圖象在(0,f(0))處切線的斜率為﹣4,得f′(0)=﹣4,由此可求a的值.【詳解】由函數得,∵函數f(x)的圖象在(0,f(0))處切線的斜率為﹣4,,.故答案為4【點睛】本題考查了根據曲線上在某點切線方程的斜率求參數的問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)與交點的極坐標為,和【解析】
(1)先把曲線化成直角坐標方程,再化簡成極坐標方程;(2)聯立曲線和曲線的方程解得即可.【詳解】(1)曲線的直角坐標方程為:,即.的參數方程化為極坐標方程為;(2)聯立可得:,與交點的極坐標為,和.【點睛】本題考查了參數方程,直角坐標方程,極坐標方程的互化,也考查了極坐標方程的聯立,屬于基礎題.18.(1)乙同學正確(2)分布列見解析,【解析】
(1)由已知可得甲不正確,求出樣本中心點代入驗證,即可得出結論;(2)根據(1)中得到的回歸方程,求出估值,得到“理想數據”的個數,確定“理想數據”的個數的可能值,并求出概率,得到分布列,即可求解.【詳解】(1)已知變量具有線性負相關關系,故甲不正確,,代入兩個回歸方程,驗證乙同學正確,故回歸方程為:(2)由(1)得到的回歸方程,計算估計數據如下表:“理想數據”有3個,故“理想數據”的個數的取值為:.,,于是“理想數據”的個數的分布列【點睛】本題考查樣本回歸中心點與線性回歸直線方程關系,以及離散型隨機變量的分布列和期望,意在考查邏輯推理、數學計算能力,屬于中檔題.19.(1),;(2).【解析】
(1)設點極坐標分別為,,由可得,整理即可得到極坐標方程,進而求得直角坐標方程;(2)設點對應的參數分別為,則,,將直線的參數方程代入的直角坐標方程中,再利用韋達定理可得,,則,求得取最小值時符合的條件,進而求得直線的普通方程.【詳解】(1)設點極坐標分別為,,因為,則,所以曲線的極坐標方程為,兩邊同乘,得,所以的直角坐標方程為,即.(2)設點對應的參數分別為,則,,將直線的參數方程(參數),代入的直角坐標方程中,整理得.由韋達定理得,,所以,當且僅當時,等號成立,則,所以當取得最小值時,直線的普通方程為.【點睛】本題考查極坐標與直角坐標方程的轉化,考查利用直線的參數方程研究直線與圓的位置關系.20.(Ⅰ),;(Ⅱ)見解析【解析】
(Ⅰ)由,且成等差數列,可求得q,從而可得本題答案;(Ⅱ)化簡求得,然后求得,再用裂項相消法求,即可得到本題答案.【詳解】(Ⅰ)因為數列是各項均為正數的等比數列,,可設公比為q,,又成等差數列,所以,即,解得或(舍去),則,;(Ⅱ)證明:,,,則,因為,所以即.【點睛】本題主要考查等差等比數列的綜合應用,以及用裂項相消法求和并證明不等式,考查學生的運算求解能力和推理證明能力.21.(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,進而得,在中,由正弦定理得,所以的面積即可得解.試題解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 全面行政車輛管理制度
- 化纖成品倉庫管理制度
- 計算機三級數據庫高效查詢技巧試題及答案
- 工廠宿舍秩序管理制度
- 確保文檔一致性的測試流程實施試題及答案
- 公司員工餐飲管理制度
- 假期學生安全管理制度
- 公司全電發票管理制度
- 學生安全接送管理制度
- 醫院倉庫發放管理制度
- 微型消防站設立方案
- 2025年形勢與政策-加快建設社會主義文化強國+第二講中國經濟行穩致遠
- 合同緊急聯系人協議
- 中國城市規劃與建設發展報告
- 人工智能技術與知識產權保護
- 交通運輸行業消防隱患排查措施
- 養生館員工管理制度
- 商業保險在風險管理中的應用
- 第三單元 傳承中華傳統文化 單元測試題(含答案)-2024-2025學年下學期 七年級道德與法治
- 2025年檔案管理員試題及答案
- 家庭法律顧問合同范本
評論
0/150
提交評論