




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年遼寧省遼陽市成考專升本高等數學一自考預測試題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(50題)1.
2.函數y=ex+arctanx在區間[-1,1]上()
A.單調減少B.單調增加C.無最大值D.無最小值
3.
4.
5.A.0B.1C.∞D.不存在但不是∞
6.
7.設y=x2-e2,則y=
A.2x-2e
B.2x-e2
C.2x-e
D.2x
8.設z=x2y,則等于()。A.2yx2y-1
B.x2ylnx
C.2x2y-1lnx
D.2x2ylnx
9.A.A.0B.1C.2D.任意值
10.
11.
12.A.A.
B.
C.
D.
13.
14.
15.微分方程y’-4y=0的特征根為()A.0,4B.-2,2C.-2,4D.2,4
16.
17.設z=ln(x2+y),則等于()。A.
B.
C.
D.
18.下列反常積分收斂的是()。A.∫1+∞xdx
B.∫1+∞x2dx
C.
D.
19.
20.已知y=ksin2x的一個原函數為y=cos2x,則k等于().A.A.2B.1C.-lD.-2
21.
22.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無關條件23.A.A.
B.
C.
D.不能確定
24.設函數f(x)=COS2x,則f′(x)=().
A.2sin2x
B.-2sin2x
C.sin2x
D.-sin2x
25.
26.
27.設函數在x=0處連續,則等于()。A.2B.1/2C.1D.-2
28.
29.設y=f(x)在(a,b)內有二階導數,且f"<0,則曲線y=f(x)在(a,b)內().A.A.凹B.凸C.凹凸性不可確定D.單調減少
30.
31.設y=5x,則y'等于().
A.A.
B.
C.
D.
32.
33.下列命題中正確的有().
34.
35.
36.設()A.1B.-1C.0D.237.A.A.sin(x-1)+C
B.-sin(x-1)+C
C.sinx+C&nbsbr;
D.-sinx+C
38.由曲線y=1/X,直線y=x,x=2所圍面積為
A.A.
B.B.
C.C.
D.D.
39.設k>0,則級數為().A.A.條件收斂B.絕對收斂C.發散D.收斂性與k有關
40.lim(x2+1)=
x→0
A.3
B.2
C.1
D.0
41.
42.在下列函數中,在指定區間為有界的是()。
A.f(x)=22z∈(一∞,0)
B.f(x)=lnxz∈(0,1)
C.
D.f(x)=x2x∈(0,+∞)
43.
44.
45.A.A.-sinx
B.cosx
C.
D.
46.下列等式成立的是()。
A.
B.
C.
D.
47.()。A.過原點且平行于X軸B.不過原點但平行于X軸C.過原點且垂直于X軸D.不過原點但垂直于X軸
48.
49.A.A.>0B.<0C.=0D.不存在
50.f(x)在[a,b]上可導是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無關條件二、填空題(20題)51.
52.設f(x)=esinx,則=________。
53.
54.55.=______.
56.
57.
58.冪級數的收斂半徑為______.
59.
60.
61.
62.已知平面π:2x+y-3z+2=0,則過點(0,0,0)且與π垂直的直線方程為______.63.64.
65.
66.設y=3x,則y"=_________。
67.
68.設y=cosx,則y'=______
69.設y=x2+e2,則dy=________70.設y=f(x)在點x=0處可導,且x=0為f(x)的極值點,則f'(0)=______.三、計算題(20題)71.研究級數的收斂性(即何時絕對收斂,何時條件收斂,何時發散,其中常數a>0.72.當x一0時f(x)與sin2x是等價無窮小量,則73.求函數f(x)=x3-3x+1的單調區間和極值.
74.求微分方程y"-4y'+4y=e-2x的通解.
75.設拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區域內,以線段AB為下底作內接等腰梯形ABCD(如圖2—1所示).設梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
76.
77.已知某商品市場需求規律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
78.求函數y=x-lnx的單調區間,并求該曲線在點(1,1)處的切線l的方程.
79.
80.
81.82.
83.將f(x)=e-2X展開為x的冪級數.
84.
85.86.證明:87.設平面薄板所占Oxy平面上的區域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質量m.88.求函數一的單調區間、極值及其曲線的凹凸區間和拐點.89.求曲線在點(1,3)處的切線方程.90.求微分方程的通解.四、解答題(10題)91.求y=xlnx的極值與極值點.92.
93.求直線y=2x+1與直線x=0,x=1和y=0所圍平面圖形的面積,并求該圖形繞x軸旋轉一周所得旋轉體的體積。
94.95.
96.證明:當時,sinx+tanx≥2x.
97.
98.將f(x)=ln(1+x2)展開為x的冪級數.99.求曲線的漸近線.100.在第Ⅰ象限內的曲線上求一點M(x,y),使過該點的切線被兩坐標軸所截線段的長度為最小.五、高等數學(0題)101.
=()。
A.0B.1C.2D.4六、解答題(0題)102.
參考答案
1.D解析:
2.B因處處成立,于是函數在(-∞,+∞)內都是單調增加的,故在[-1,1]上單調增加.
3.B
4.D
5.D
6.B
7.D
8.A本題考查的知識點為偏導數的計算。對于z=x2y,求的時候,要將z認定為x的冪函數,從而可知應選A。
9.B
10.C解析:
11.D
12.A
13.B
14.C解析:
15.B由r2-4=0,r1=2,r2=-2,知y"-4y=0的特征根為2,-2,故選B.
16.D
17.A本題考查的知識點為偏導數的計算。由于故知應選A。
18.DA,∫1+∞xdx==∞發散;
19.C解析:
20.D本題考查的知識點為原函數的概念、復合函數求導.
21.B
22.D
23.B
24.B由復合函數求導法則,可得
故選B.
25.A
26.C解析:
27.C本題考查的知識點為函數連續性的概念。由于f(x)在點x=0連續,因此,故a=1,應選C。
28.C
29.A本題考查的知識點為利用二階導數符號判定曲線的凹凸性.
由于在(a,b)區間內f"(x)<0,可知曲線y=f(x)在(a,b)內為凹的,因此選A.
30.C
31.C本題考查的知識點為基本初等函數的求導.
y=5x,y'=5xln5,因此應選C.
32.D
33.B解析:
34.D
35.B
36.A
37.A本題考查的知識點為不定積分運算.
可知應選A.
38.B本題考查了曲線所圍成的面積的知識點,
曲線y=1/X與直線y=x,x=2所圍成的區域D如下圖所示,
39.A本題考查的知識點為級數的絕對收斂與條件收斂.
由于為萊布尼茨級數,為條件收斂.而為萊布尼茨級數乘以數-k,可知應選A.
40.C
41.A解析:
42.A∵0<2x<1x∈(一∞,0)∴f(x)=2x在區間(一∞,0)內為有界函數。
43.C
44.B
45.C本題考查的知識點為基本導數公式.
可知應選C.
46.C
47.C將原點(0,0,O)代入直線方程成等式,可知直線過原點(或由
48.C
49.C被積函數sin5x為奇函數,積分區間[-1,1]為對稱區間。由定積分的對稱性質知選C。
50.B∵可導一定連續,連續一定可積;反之不一定。∴可導是可積的充分條件
51.11解析:52.由f(x)=esinx,則f"(x)=cosxesinx。再根據導數定義有=cosπesinπ=-1。
53.x=-3x=-3解析:
54.1/z本題考查了二元函數的二階偏導數的知識點。55.本題考查的知識點為定積分的換元積分法。設t=x/2,則x=2t,dx=2dt.當x=0時,t=0;當x=π時,t=π/2。因此
56.1/3
57.
本題考查的知識點為導數的四則運算.
58.
解析:本題考查的知識點為冪級數的收斂半徑.
注意此處冪級數為缺項情形.
59.
60.In2
61.f(x)+Cf(x)+C解析:
62.本題考查的知識點為直線的方程和平面與直線的關系.
由于直線與已知平面垂直,可知直線的方向向量s與平面的法向量n平行.可以取s=n=(2,1,-3),又已知直線過點(0,0,0),由直線的標準式方程可知
為所求.
63.
本題考查的知識點為定積分的換元法.
解法1
解法2
令t=1+x2,則dt=2xdx.
當x=1時,t=2;當x=2時,t=5.
這里的錯誤在于進行定積分變量替換,積分區間沒做變化.
64.1本題考查了一階導數的知識點。
65.66.3e3x
67.-4cos2x
68.-sinx69.(2x+e2)dx70.0本題考查的知識點為極值的必要條件.
由于y=f(x)在點x=0可導,且x=0為f(x)的極值點,由極值的必要條件可知有f'(0)=0.
71.
72.由等價無窮小量的定義可知73.函數的定義域為
注意
74.解:原方程對應的齊次方程為y"-4y'+4y=0,
75.
76.
77.需求規律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
78.
79.
80.
則
81.
82.由一階線性微分方程通解公式有
83.
84.
85.
86.
87.由二重積分物理意義知
88.
列表:
說明
89.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或寫為2x+y-5=0.
如果函數y=f(x)在點x0處的導數f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
90.91.y=x1nx的定義域為x>0,
92.
93.94.積分區域D如下圖所示:
被積函數f(x,y)=y/x,化為二次積分時對哪個變量皆易于積分;但是區域D易于用X—型不等式表示,因此選擇先對y積分,后對x積分的二次積分次序.
95.
96.
97.98.由于
因此
本題考查的知識點為將函數展開為冪級數.
綱中指出“會運用ex,sinx,cosx,ln(1+x),的麥克勞林展開式,將一些簡單的初等函數展開為x或(x-x0)的冪級數.”這表明本題應該將ln(1+x2)變形認作ln(1+x)的形式,利用間接法展開為x的冪級數.
本題中考生出現的常見錯誤是對ln(1+x2)關于x的冪級數不注明該級數的收斂區間,這是要扣分的.99.由于
可知y=0為所給曲線的水平漸近線.由于
,可知x=2為所給曲線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省鎮江市東部教育集團2024-2025學年初三下第四次月考試題語文試題含解析
- 江蘇省常州市教育會重點中學2025年初三第三次大聯考(新課標卷)生物試題含解析
- 南昌航空大學科技學院《犯罪心理學專題》2023-2024學年第二學期期末試卷
- 吉林省長春市第三中學2024-2025學年下學期初三年級七調考試數學試題含解析
- 山西鐵道職業技術學院《創新創業理論與技術》2023-2024學年第二學期期末試卷
- 遼寧省大連市海灣高級中學2024-2025學年高三第12次模擬(壓軸卷)數學試題試卷含解析
- 四川省宜賓市翠屏區二片區達標名校2025年初三下學期開學質檢生物試題含解析
- 山西管理職業學院《錄音與編輯技術》2023-2024學年第一學期期末試卷
- 蘭州工商學院《影像學》2023-2024學年第一學期期末試卷
- 湘西市重點中學2025年初三一輪復習第四次過關英語試題試卷含答案
- 基于stm32的智能小車設計畢業設計論文
- 苯酚的分子組成和結構課件
- 《羅織經》全文及翻譯
- GB∕T 26077-2021 金屬材料 疲勞試驗 軸向應變控制方法
- 維修服務評價表
- 《二次函數圖像與性質》學習評價量規
- 哲學專業英語詞匯
- 2019版人教版教材習題高中物理必修3
- 第1課 古代埃及-部編版歷史九年級上冊課件(共16張PPT)
- 安全生產負責人任命書
- 基于內模控制的模糊PID參數的整定外文文獻翻譯完稿
評論
0/150
提交評論