2022年湖南省益陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022年湖南省益陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022年湖南省益陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022年湖南省益陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022年湖南省益陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年湖南省益陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.設(shè)y=e-3x,則dy=A.e-3xdx

B.-e-3xdx

C.-3e-3xdx

D.3e-3xdx

3.設(shè)函數(shù)f(x)在[a,b]上連續(xù),且f(a)·f(b)<0,則必定存在一點(diǎn)ξ∈(a,b)使得()A.f(ξ)>0B.f(ξ)<0C.f(ξ)=0D.f(ξ)=0

4.函數(shù)f(x)=5x在區(qū)間[-1,1]上的最大值是A.A.-(1/5)B.0C.1/5D.5

5.若函數(shù)f(x)=5x,則f'(x)=

A.5x-1

B.x5x-1

C.5xln5

D.5x

6.

7.設(shè)Y=e-5x,則dy=().

A.-5e-5xdx

B.-e-5xdx

C.e-5xdx

D.5e-5xdx

8.

9.

10.().A.A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸

11.()。A.收斂且和為0

B.收斂且和為α

C.收斂且和為α-α1

D.發(fā)散

12.函數(shù)z=x2-xy+y2+9x-6y+20有()

A.極大值f(4,1)=63B.極大值f(0,0)=20C.極大值f(-4,1)=-1D.極小值f(-4,1)=-1

13.

14.方程x2+2y2-z2=0表示的曲面是()A.A.橢球面B.錐面C.柱面D.平面

15.A.

B.x2

C.2x

D.

16.

17.A.2/5B.0C.-2/5D.1/2

18.設(shè)y=f(x)在[0,1]上連續(xù),且f(0)>0,f(1)<0,則下列選項(xiàng)正確的是

A.f(x)在[0,1]上可能無(wú)界

B.f(x)在[0,1]上未必有最小值

C.f(x)在[0,1]上未必有最大值

D.方程f(x)=0在(0,1)內(nèi)至少有一個(gè)實(shí)根

19.微分方程y'+x=0的通解()。A.

B.

C.

D.

20.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于()。A.0

B.

C.

D.π

二、填空題(20題)21.

22.過(guò)點(diǎn)M0(1,2,-1)且與平面x-y+3z+1=0垂直的直線方程為_(kāi)________。

23.

24.

25.直線的方向向量為_(kāi)_______。

26.

27.

28.

29.

30.

31.

32.設(shè)y=e3x知,則y'_______。

33.設(shè)f(x)=xex,則f'(x)__________。

34.

35.

36.

37.設(shè),則y'=______.

38.

39.

40.

三、計(jì)算題(20題)41.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

43.證明:

44.

45.

46.求微分方程y"-4y'+4y=e-2x的通解.

47.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

48.求曲線在點(diǎn)(1,3)處的切線方程.

49.

50.

51.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

52.

53.

54.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

55.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

56.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

57.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

58.求微分方程的通解.

59.

60.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

四、解答題(10題)61.

62.

63.

64.

65.(本題滿分10分)設(shè)F(x)為f(x)的-個(gè)原函數(shù),且f(x)=xlnx,求F(x).

66.

67.

68.展開(kāi)成x-1的冪級(jí)數(shù),并指明收斂區(qū)間(不考慮端點(diǎn))。

69.求∫sin(x+2)dx。

70.

五、高等數(shù)學(xué)(0題)71.已知f(x)的一個(gè)原函數(shù)為(1+sinz)lnz,求∫xf(x)dx。

六、解答題(0題)72.

參考答案

1.D

2.C

3.D

4.Df(x)=5x,f'(x)=5xln5>0,可知f(x)在[-1,1]上單調(diào)增加,最大值為f(1)=5,所以選D。

5.C本題考查了導(dǎo)數(shù)的基本公式的知識(shí)點(diǎn)。f'(x)=(5x)'=5xln5.

6.D

7.A

【評(píng)析】基本初等函數(shù)的求導(dǎo)公式與導(dǎo)數(shù)的四則運(yùn)算法則是常見(jiàn)的試題,一定要熟記基本初等函數(shù)求導(dǎo)公式.對(duì)簡(jiǎn)單的復(fù)合函數(shù)的求導(dǎo),應(yīng)該注意由外到里,每次求一個(gè)層次的導(dǎo)數(shù),不要丟掉任何一個(gè)復(fù)合層次.

8.A解析:

9.A解析:

10.B本題考查的知識(shí)點(diǎn)為利用一階導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性和利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.

11.C

12.D

13.A

14.B對(duì)照二次曲面的標(biāo)準(zhǔn)方程可知,所給曲面為錐面,因此選B.

15.C

16.D解析:

17.A本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)

18.D

19.D所給方程為可分離變量方程.

20.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論。

21.

22.

23.

本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).

24.

解析:

25.直線l的方向向量為

26.

27.y=xe+Cy=xe+C解析:

28.

29.本題考查的知識(shí)點(diǎn)為重要極限公式。

30.

31.

32.3e3x

33.(1+x)ex

34.本題考查的知識(shí)點(diǎn)為用洛必達(dá)法則求未定型極限.

35.

本題考查的知識(shí)點(diǎn)為函數(shù)商的求導(dǎo)運(yùn)算.

考生只需熟記導(dǎo)數(shù)運(yùn)算的法則

36.(2x+cosx)dx.

本題考查的知識(shí)點(diǎn)為微分運(yùn)算.

37.解析:本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.

38.(1+x)ex(1+x)ex

解析:

39.

本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.

40.e-1/2

41.

42.函數(shù)的定義域?yàn)?/p>

注意

43.

44.

45.

46.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

47.

列表:

說(shuō)明

48.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

49.

50.

51.由等價(jià)無(wú)窮小量的定義可知

52.

53.

54.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

55.由二重積分物理意義知

56.

57.

58.

59.由一階線性微分方程通解公式有

60.

61.

62.本題考查的知識(shí)點(diǎn)為求隱函數(shù)的微分.

解法1將方程兩端關(guān)于x求導(dǎo),可得

解法2將方程兩端求微分

【解題指導(dǎo)】

若y=y(tǒng)(x)由方程F(x,y)=0確定,求dy常常有兩種方法.

(1)將方程F(x,y)=0直接求微分,然后解出dy.

(2)先由方程F(x,y)=0求y,再由dy=y(tǒng)dx得出微分dy.

63.

64.

65.本題考查的知識(shí)點(diǎn)為兩個(gè):原函數(shù)的概念和分部積分法.

由題設(shè)可得知

66.

67.

68.

69.∫sin(x+2)dx=∫sin(x+2)d(x+2)=-cos(x+2)+C。

70.

71.∫f"(x)dx=∫xdf(x)=xf(x)一∫f(x)dx∵f(x)的原函數(shù)為(1+sinx)Inx;

∴f(x)dx=(1+sinx)Inx+c∴原式=xcoslnx+(1+sinx)一(1+s

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論