2021-2022學年阿壩市重點中學中考數學適應性模擬試題含解析_第1頁
2021-2022學年阿壩市重點中學中考數學適應性模擬試題含解析_第2頁
2021-2022學年阿壩市重點中學中考數學適應性模擬試題含解析_第3頁
2021-2022學年阿壩市重點中學中考數學適應性模擬試題含解析_第4頁
2021-2022學年阿壩市重點中學中考數學適應性模擬試題含解析_第5頁
免費預覽已結束,剩余13頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如果與互補,與互余,則與的關系是()A. B.C. D.以上都不對2.1cm2的電子屏上約有細菌135000個,135000用科學記數法表示為()A.0.135×106 B.1.35×105 C.13.5×104 D.135×1033.把多項式x2+ax+b分解因式,得(x+1)(x-3),則a、b的值分別是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-34.如圖,在平面直角坐標系xOy中,A(2,0),B(0,2),⊙C的圓心為點C(﹣1,0),半徑為1.若D是⊙C上的一個動點,線段DA與y軸交于E點,則△ABE面積的最小值是()A.2B.83C.2+25.把拋物線y=﹣2x2向上平移1個單位,得到的拋物線是()A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2 D.y=﹣2(x﹣1)26.按如下方法,將△ABC的三邊縮小的原來的,如圖,任取一點O,連AO、BO、CO,并取它們的中點D、E、F,得△DEF,則下列說法正確的個數是()①△ABC與△DEF是位似圖形

②△ABC與△DEF是相似圖形③△ABC與△DEF的周長比為1:2

④△ABC與△DEF的面積比為4:1.A.1 B.2 C.3 D.47.估計-1的值在()A.0到1之間 B.1到2之間 C.2到3之間 D.3至4之間8.下列各式中正確的是()A.9=±3B.(-3)2=﹣3C.399.如圖,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使△ADC與△BDA相似,可以添加一個條件.下列添加的條件中錯誤的是()A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD10.今年,我省啟動了“關愛留守兒童工程”.某村小為了了解各年級留守兒童的數量,對一到六年級留守兒童數量進行了統計,得到每個年級的留守兒童人數分別為10,15,10,17,18,1.對于這組數據,下列說法錯誤的是()A.平均數是15 B.眾數是10 C.中位數是17 D.方差是二、填空題(共7小題,每小題3分,滿分21分)11.用不等號“>”或“<”連接:sin50°_____cos50°.12.我國倡導的“一帶一路”建設將促進我國與世界各國的互利合作,“一帶一路”地區覆蓋總人口約為4400000000人,將數據4400000000用科學記數法表示為______.13.在如圖的正方形方格紙中,每個小的四邊形都是相同的正方形,A,B,C,D都在格點處,AB與CD相交于O,則tan∠BOD的值等于__________.14.二次函數y=ax2+bx+c的圖象如圖所示,以下結論:①abc>0;②4ac<b2;③2a+b>0;④其頂點坐標為(,﹣2);⑤當x<時,y隨x的增大而減小;⑥a+b+c>0中,正確的有______.(只填序號)15.意大利著名數學家斐波那契在研究兔子繁殖問題時,發現有這樣一組數:1,1,2,3,5,8,13,…,請根據這組數的規律寫出第10個數是______.16.如圖,已知拋物線和x軸交于兩點A、B,和y軸交于點C,已知A、B兩點的橫坐標分別為﹣1,4,△ABC是直角三角形,∠ACB=90°,則此拋物線頂點的坐標為_____.17.用半徑為6cm,圓心角為120°的扇形圍成一個圓錐,則圓錐的底面圓半徑為_______cm.三、解答題(共7小題,滿分69分)18.(10分)某區教育局為了解今年九年級學生體育測試情況,隨機抽查了某班學生的體育測試成績為樣本,按A、B、C、D四個等級進行統計,并將統計結果繪制成如下的統計圖,請你結合圖中所給信息解答下列問題:說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下(1)樣本中D級的學生人數占全班學生人數的百分比是;(2)扇形統計圖中A級所在的扇形的圓心角度數是;(3)請把條形統計圖補充完整;(4)若該校九年級有500名學生,請你用此樣本估計體育測試中A級和B級的學生人數之和.19.(5分)拋物線y=﹣x2+(m﹣1)x+m與y軸交于(0,3)點.(1)求出m的值并畫出這條拋物線;(2)求它與x軸的交點和拋物線頂點的坐標;(3)x取什么值時,拋物線在x軸上方?(4)x取什么值時,y的值隨x值的增大而減小?20.(8分)為營造“安全出行”的良好交通氛圍,實時監控道路交迸,某市交管部門在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CD與AM交于點C,橫桿DE∥AB,攝像頭EF⊥DE于點E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.求∠MCD的度數;求攝像頭下端點F到地面AB的距離.(精確到百分位)21.(10分)先化簡,再求值:﹣÷,其中a=1.22.(10分)如圖,將△ABC放在每個小正方形的邊長為1的網格中,點A、點B、點C均落在格點上.(I)計算△ABC的邊AC的長為_____.(II)點P、Q分別為邊AB、AC上的動點,連接PQ、QB.當PQ+QB取得最小值時,請在如圖所示的網格中,用無刻度的直尺,畫出線段PQ、QB,并簡要說明點P、Q的位置是如何找到的_____(不要求證明).23.(12分)如圖,AB為⊙O的直徑,點D、E位于AB兩側的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.求證:CD∥AB;填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.24.(14分)已知二次函數的圖象如圖6所示,它與軸的一個交點坐標為,與軸的交點坐標為(0,3).求出此二次函數的解析式;根據圖象,寫出函數值為正數時,自變量的取值范圍.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據∠1與∠2互補,∠2與∠1互余,先把∠1、∠1都用∠2來表示,再進行運算.【詳解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1.故選C.【點睛】此題主要記住互為余角的兩個角的和為90°,互為補角的兩個角的和為180度.2、B【解析】

根據科學記數法的表示形式(a×10n的形式,其中1≤|a|<10,n為整數,確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同;當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數).【詳解】解:135000用科學記數法表示為:1.35×1.故選B.【點睛】科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.3、B【解析】分析:根據整式的乘法,先還原多項式,然后對應求出a、b即可.詳解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故選B.點睛:此題主要考查了整式的乘法和因式分解的關系,利用它們之間的互逆運算的關系是解題關鍵.4、C【解析】當⊙C與AD相切時,△ABE面積最大,連接CD,則∠CDA=90°,∵A(2,0),B(0,2),⊙C的圓心為點C(-1,0),半徑為1,∴CD=1,AC=2+1=3,∴AD=AC2-CD∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案為C.5、A【解析】

根據“上加下減”的原則進行解答即可.【詳解】解:由“上加下減”的原則可知,把拋物線y=﹣2x2向上平移1個單位,得到的拋物線是:y=﹣2x2+1.故選A.【點睛】本題考查的是二次函數的圖象與幾何變換,熟知“上加下減”的原則是解答此題的關鍵.6、C【解析】

根據位似圖形的性質,得出①△ABC與△DEF是位似圖形進而根據位似圖形一定是相似圖形得出②△ABC與△DEF是相似圖形,再根據周長比等于位似比,以及根據面積比等于相似比的平方,即可得出答案.【詳解】解:根據位似性質得出①△ABC與△DEF是位似圖形,②△ABC與△DEF是相似圖形,∵將△ABC的三邊縮小的原來的,∴△ABC與△DEF的周長比為2:1,故③選項錯誤,根據面積比等于相似比的平方,∴④△ABC與△DEF的面積比為4:1.故選C.【點睛】此題主要考查了位似圖形的性質,中等難度,熟悉位似圖形的性質是解決問題的關鍵.7、B【解析】試題分析:∵2<<3,∴1<-1<2,即-1在1到2之間,故選B.考點:估算無理數的大小.8、D【解析】

原式利用平方根、立方根定義計算即可求出值.【詳解】解:A、原式=3,不符合題意;B、原式=|-3|=3,不符合題意;C、原式不能化簡,不符合題意;D、原式=23-3=3,符合題意,故選:D.【點睛】此題考查了立方根,以及算術平方根,熟練掌握各自的性質是解本題的關鍵.9、D【解析】

解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A選項正確;∵AD=DE,∴,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B選項正確;∵AD2=BD?CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C選項正確;∵CD?AB=AC?BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是對應夾角,故D選項錯誤,故選:D.考點:1.圓周角定理2.相似三角形的判定10、C【解析】

解:中位數應該是15和17的平均數16,故C選項錯誤,其他選擇正確.故選C.【點睛】本題考查求中位數,眾數,方差,理解相關概念是本題的解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、>【解析】試題解析:∵cos50°=sin40°,sin50°>sin40°,∴sin50°>cos50°.故答案為>.點睛:當角度在0°~90°間變化時,①正弦值隨著角度的增大(或減小)而增大(或減小);②余弦值隨著角度的增大(或減小)而減小(或增大);③正切值隨著角度的增大(或減小)而增大(或減小).12、4.4×1【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】4400000000的小數點向左移動9位得到4.4,所以4400000000用科學記數法可表示為:4.4×1,故答案為4.4×1.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.13、3【解析】試題解析:平移CD到C′D′交AB于O′,如圖所示,則∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,設每個小正方形的邊長為a,則O′B=,O′D′=,BD′=3a,作BE⊥O′D′于點E,則BE=,∴O′E=,∴tanBO′E=,∴tan∠BOD=3.考點:解直角三角形.14、①②③⑤【解析】

根據圖象可判斷①②③④⑤,由x=1時,y<0,可判斷⑥【詳解】由圖象可得,a>0,c<0,b<0,△=b2﹣4ac>0,對稱軸為x=∴abc>0,4ac<b2,當時,y隨x的增大而減小.故①②⑤正確,∵∴2a+b>0,故③正確,由圖象可得頂點縱坐標小于﹣2,則④錯誤,當x=1時,y=a+b+c<0,故⑥錯誤故答案為:①②③⑤【點睛】本題考查的是二次函數圖象與系數的關系,二次函數y=ax2+bx+c系數符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數確定.15、1【解析】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以發現:從第三個數起,每一個數都等于它前面兩個數的和.則第8個數為13+8=21;第9個數為21+13=34;第10個數為34+21=1.故答案為1.點睛:此題考查了數字的有規律變化,解答此類題目的關鍵是要求學生通對題目中給出的圖表、數據等認真進行分析、歸納并發現其中的規律,并應用規律解決問題.此類題目難度一般偏大.16、(,)【解析】

連接AC,根據題意易證△AOC∽△COB,則,求得OC=2,即點C的坐標為(0,2),可設拋物線解析式為y=a(x+1)(x﹣4),然后將C點坐標代入求解,最后將解析式化為頂點式即可.【詳解】解:連接AC,∵A、B兩點的橫坐標分別為﹣1,4,∴OA=1,OB=4,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵CO⊥AB,∴∠ABC+∠BCO=90°,∴∠CAB=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,即=,解得OC=2,∴點C的坐標為(0,2),∵A、B兩點的橫坐標分別為﹣1,4,∴設拋物線解析式為y=a(x+1)(x﹣4),把點C的坐標代入得,a(0+1)(0﹣4)=2,解得a=﹣,∴y=﹣(x+1)(x﹣4)=﹣(x2﹣3x﹣4)=﹣(x﹣)2+,∴此拋物線頂點的坐標為(,).故答案為:(,).【點睛】本題主要考查相似三角形的判定與性質,拋物線的頂點式,解此題的關鍵在于熟練掌握其知識點,利用相似三角形的性質求得關鍵點的坐標.17、1.【解析】

解:設圓錐的底面圓半徑為r,根據題意得1πr=,解得r=1,即圓錐的底面圓半徑為1cm.故答案為:1.【點睛】本題考查圓錐的計算,掌握公式正確計算是解題關鍵.三、解答題(共7小題,滿分69分)18、(1)10%;(2)72;(3)5,見解析;(4)330.【解析】

解:(1)根據題意得:

D級的學生人數占全班人數的百分比是:

1-20%-46%-24%=10%;

(2)A級所在的扇形的圓心角度數是:20%×360°=72°;

(3)∵A等人數為10人,所占比例為20%,

∴抽查的學生數=10÷20%=50(人),

∴D級的學生人數是50×10%=5(人),

補圖如下:

(4)根據題意得:

體育測試中A級和B級的學生人數之和是:500×(20%+46%)=330(名),

答:體育測試中A級和B級的學生人數之和是330名.【點睛】本題考查統計的知識,要求考生會識別條形統計圖和扇形統計圖.19、(1)m=3;(2)(-1,0),(3,0)【解析】試題分析:(1)由拋物線y=﹣x2+(m﹣1)x+m與y軸交于(0,1)得:m=1.∴拋物線為y=﹣x2+2x+1=﹣(x﹣1)2+2.列表得:

X

﹣1

0

1

2

1

y

0

1

2

1

0

圖象如下.(2)由﹣x2+2x+1=0,得:x1=﹣1,x2=1.∴拋物線與x軸的交點為(﹣1,0),(1,0).∵y=﹣x2+2x+1=﹣(x﹣1)2+2∴拋物線頂點坐標為(1,2).(1)由圖象可知:當﹣1<x<1時,拋物線在x軸上方.(2)由圖象可知:當x>1時,y的值隨x值的增大而減小考點:二次函數的運用20、(1)(2)6.03米【解析】

分析:延長ED,AM交于點P,由∠CDE=162°及三角形外角的性質可得出結果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.詳解:(1)如圖,延長ED,AM交于點P,∵DE∥AB,∴,即∠MPD=90°∵∠CDE=162°∴(2)如圖,在Rt△PCD中,CD=3米,∴PC=米∵AC=5.5米,EF=0.4米,∴米答:攝像頭下端點F到地面AB的距離為6.03米.點睛:本題考查了解直角三角形的應用,解決此類問題要了解角之間的關系,找到已知和未知相關聯的的直角三角形,當圖形中沒有直角三角形時,要通過作高線或垂線構造直角三角形.21、-1【解析】

原式第二項利用除法法則變形,約分后通分,并利用同分母分式的減法法則計算,約分得到最簡結果,把a的值代入計算即可求出值.【詳解】解:原式=﹣?2(a﹣3)=﹣==,當a=1時,原式==﹣1.【點睛】此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關鍵.22、作線段AB關于AC的對稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時PQ+QB的值最小【解析】

(1)利用勾股定理計算即可;(2)作線段AB關于AC的對稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時PQ+QB的值最小.【詳解】解:(1)AC==.故答案為.(2)作線段AB關于AC的對稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時PQ+QB的值最小.

故答案為作線段AB關于AC的對稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時PQ+QB的值最小.【點睛】本題考查作圖-應用與設計,勾股定理,軸對稱-最短問題,垂線段最短等知識,解題的關鍵是學會利用軸對稱,根據垂線段最短解決最短問題,屬于中考常考題型.23、(1)詳見解析;(2)①67.5°;②90°.【解析】

(1)要證明CD∥AB,只要證明∠ODF=∠AO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論