




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每題4分,共48分)1.如圖,在△ABC中,CD平分∠ACB交AB于點D,過點D作DE∥BC交AC于點E,若∠A=54°,∠B=48°,則∠CDE的大小為()A.44° B.40° C.39° D.38°2.如圖是一棵小樹一天內在太陽下不同時刻的照片,將它們按時間先后順序進行排列正確的是()A.③—④—①—② B.②—①—④—③ C.④—①—②—③ D.④—①—③—②3.如圖,正方形的邊長是3,,連接、交于點,并分別與邊、交于點、,連接,下列結論:①;②;③;④當時,.正確結論的個數為()A.1個 B.2個 C.3個 D.4個4.若將半徑為6cm的半圓形紙片圍成一個圓錐的側面,則這個圓錐的底面圓半徑是()A.1cm B.2cm C.3cm D.4cm5.如果二次函數的圖像如圖所示,那么一次函數的圖像經過()A.第一、二、三象限 B.第一、三、四象限C.第一、二、四象限 D.第二、三、四象限6.如圖,四邊形內接于,若,則()A. B. C. D.7.如圖,在平面直角坐標系中,等腰直角三角形ABC的頂點A、B分別在x軸、y軸的正半軸上,∠ABC=90°,CA⊥x軸,點C在函數y=(x>0)的圖象上,若AB=2,則k的值為()A.4 B.2 C.2 D.8.在反比例函數的圖象的每一個分支上,y都隨x的增大而減小,則k的取值范圍是()A.k>1 B.k>0 C.k≥1 D.k<19.已知一個幾何體如圖所示,則該幾何體的左視圖是()A. B. C. D.10.如圖,二次函數()的圖象交軸于點和點,交軸的負半軸于點,且,下列結論:①;②;③;④.其中正確的個數有()A.1 B.2 C.3 D.411.用配方法解一元二次方程時,下列變形正確的是().A. B. C. D.12.方程x2﹣9=0的解是()A.3 B.±3 C.4.5 D.±4.5二、填空題(每題4分,共24分)13.三角形的兩邊長分別是3和4,第三邊長是方程x2﹣13x+40=0的根,則該三角形的周長為.14.在平面直角坐標系中,已知點,以原點為位似中心,相似比為.把縮小,則點的對應點的坐標分別是_____,_____.15.如圖,一根直立于水平地面上的木桿AB在燈光下形成影子,當木桿繞A按逆時針方向旋轉直至到達地面時,影子的長度發生變化.設AB垂直于地面時的影長為AC﹙假定AC>AB﹚,影長的最大值為m,最小值為n,那么下列結論中:①m>AC;②m=AC;③n=AB;④影子的長度先增大后減小.正確的結論序號是_____.﹙直角填寫正確的結論的序號﹚.16.如圖,點D、E、F分別位于△ABC的三邊上,滿足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.17.二次函數,當時,的最大值和最小值的和是_______.18.如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC繞點A按順時針方向旋轉60°后得到△AB′C′,若AB=4,則線段BC在上述旋轉過程中所掃過部分(陰影部分)的面積是_____.(結果保留π).三、解答題(共78分)19.(8分)如圖,在矩形ABCD中,已知AD>AB.在邊AD上取點E,連結CE.過點E作EF⊥CE,與邊AB的延長線交于點F.(1)求證:△AEF∽△DCE.(2)若AB=3,AE=4,DE=6,求線段BF的長.20.(8分)解方程:x2﹣6x+8=1.21.(8分)如圖,已知AB經過圓心O,交⊙O于點C.(1)尺規作圖:在AB上方的圓弧上找一點D,使得△ABD是以AB為底邊的等腰三角形(保留作圖痕跡);(2)在(1)的條件下,若∠DAB=30°,求證:直線BD與⊙O相切.22.(10分)如圖,在△ABC中,D為AB邊上一點,∠B=∠ACD.(1)求證:△ABC∽△ACD;(2)如果AC=6,AD=4,求DB的長.23.(10分)4張相同的卡片分別寫有數字﹣1、﹣3、4、6,將這些卡片的背面朝上,并洗勻.(1)從中任意抽取1張,抽到的數字大于0的概率是______;(2)從中任意抽取1張,并將卡片上的數字記作二次函數y=ax2+bx中的a,再從余下的卡片中任意抽取1張,并將卡片上的數字記作二次函數y=ax2+bx中的b,利用樹狀圖或表格的方法,求出這個二次函數圖象的對稱軸在y軸右側的概率.24.(10分)已知是二次函數,且函數圖象有最高點.(1)求的值;(2)當為何值時,隨的增大而減少.25.(12分)解方程:x2﹣x﹣12=1.26.如圖,在平面直角坐標系中,直線y=﹣x+2分別交x軸、y軸于點A、B.點C的坐標是(﹣1,0),拋物線y=ax2+bx﹣2經過A、C兩點且交y軸于點D.點P為x軸上一點,過點P作x軸的垂線交直線AB于點M,交拋物線于點Q,連結DQ,設點P的橫坐標為m(m≠0).(1)求點A的坐標.(2)求拋物線的表達式.(3)當以B、D、Q,M為頂點的四邊形是平行四邊形時,求m的值.
參考答案一、選擇題(每題4分,共48分)1、C【解析】根據三角形內角和得出∠ACB,利用角平分線得出∠DCB,再利用平行線的性質解答即可.【詳解】∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于點D,∴∠DCB=×78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故選C.【點睛】本題考查了三角形內角和定理、角平分線的定義、平行線的性質等,解題的關鍵是熟練掌握和靈活運用根據三角形內角和定理、角平分線的定義和平行線的性質.2、B【分析】根據一天中影子的長短和方向判斷即可.【詳解】眾所周知,影子方向的變化是上午時朝向西邊,中午時朝向北邊,下午時朝向東邊;影子長短的變化是由長變短再變長,結合方向和長短的變化即可得出答案故選B【點睛】本題主要考查影子的方向和長短變化,掌握影子的方向和長短的變化規律是解題的關鍵.3、D【分析】由四邊形ABCD是正方形,得到AD=BC=AB,∠DAB=∠ABC=90°,即可證明△DAP≌△ABQ,根據全等三角形的性質得到∠P=∠Q,根據余角的性質得到AQ⊥DP;故①正確;根據相似三角形的性質得到AO2=OD?OP,故②正確;根據△CQF≌△BPE,得到S△CQF=S△BPE,根據△DAP≌△ABQ,得到S△DAP=S△ABQ,即可得到S△AOD=S四邊形OECF;故③正確;根據相似三角形的性質得到BE的長,進而求得QE的長,證明△QOE∽△POA,根據相似三角形對應邊成比例即可判斷④正確,即可得到結論.【詳解】∵四邊形ABCD是正方形,∴AD=BC=AB,∠DAB=∠ABC=90°.∵BP=CQ,∴AP=BQ.在△DAP與△ABQ中,∵,∴△DAP≌△ABQ,∴∠P=∠Q.∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正確;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD?OP.故②正確;在△CQF與△BPE中,∵,∴△CQF≌△BPE,∴S△CQF=S△BPE.∵△DAP≌△ABQ,∴S△DAP=S△ABQ,∴S△AOD=S四邊形OECF;故③正確;∵BP=1,AB=3,∴AP=1.∵∠P=∠P,∠EBP=∠DAP=90°,∴△PBE∽△PAD,∴,∴BE,∴QE,∵∠Q=∠P,∠QOE=∠POA=90°,∴△QOE∽△POA,∴,∴,故④正確.故選:D.【點睛】本題考查了相似三角形的判定和性質,全等三角形的判定和性質,正方形的性質,熟練掌握全等三角形的判定和性質是解答本題的關鍵.4、C【分析】根據圓錐的底面圓周長是扇形的弧長列式求解即可.【詳解】設圓錐的底面半徑是r,由題意得,,∴r=3cm.故選C.【點睛】本題考查了圓錐的計算,正確理解圓錐的側面展開圖與原來的扇形之間的關系是解決本題的關鍵,理解圓錐的母線長是扇形的半徑,圓錐的底面圓周長是扇形的弧長.5、B【分析】由二次函數解析式表示出頂點坐標,根據圖形得到頂點在第四象限,求出m與n的正負,即可作出判斷.【詳解】根據題意得:拋物線的頂點坐標為(m,n),且在第四象限,
∴m>0,n<0,
則一次函數y=mx+n經過第一、三、四象限.
故選:B.【點睛】此題考查了二次函數與一次函數圖象與系數的關系,熟練掌握二次函數及一次函數的圖象與性質是解題的關鍵.6、C【分析】根據圓內接四邊形對角互補可得∠C=180°×=105°.【詳解】∵∠A+∠C=180°,∠A:∠C=5:7,∴∠C=180°×=105°.故選:C.【點睛】此題主要考查了圓內接四邊形,關鍵是掌握圓內接四邊形對角互補.7、A【解析】作BD⊥AC于D,如圖,先利用等腰直角三角形的性質得到AC=AB=2,BD=AD=CD=,再利用AC⊥x軸得到C(,2),然后根據反比例函數圖象上點的坐標特征計算k的值.【詳解】作BD⊥AC于D,如圖,∵△ABC為等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x軸,∴C(,2),把C(,2)代入y=得k=×2=4,故選A.【點睛】本題考查了等腰直角三角形的性質以及反比例函數圖象上點的坐標特征,熟知反比例函數y=(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k是解題的關鍵.8、A【分析】根據反比例函數的性質,當反比例函數的系數大于0時,在每一支曲線上,y都隨x的增大而減小,可得k﹣1>0,解可得k的取值范圍.【詳解】解:根據題意,在反比例函數圖象的每一支曲線上,y都隨x的增大而減小,即可得k﹣1>0,解得k>1.故選A.【點評】本題考查了反比例函數的性質:①當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限.②當k>0時,在同一個象限內,y隨x的增大而減小;當k<0時,在同一個象限,y隨x的增大而增大.9、B【解析】根據左視圖的定義:由物體左邊向右做正投影得到的視圖(不可見的用虛線),判斷即可.【詳解】解:根據左視圖的定義可知:該幾何體的左視圖為:故選:B.【點睛】此題考查的是判斷一個幾何體的左視圖,掌握左視圖的定義:由物體左邊向右做正投影得到的視圖(不可見的用虛線),是解決此題的關鍵.10、D【分析】先根據圖像,判斷出a、b、c的符號,即可判斷①;先求出點C的坐標,結合已知條件即可求出點A的坐標,根據根與系數的關系即可判斷②;將點A的坐標代入解析式中,即可判斷③;將點B的坐標和代入解析式中,即可判斷④.【詳解】解:由圖像可知:拋物線的開口向上∴a>0對稱軸在y軸右側∴a、b異號,即b<0∴a-b>0拋物線與y軸交于負半軸∴c<0∴,①正確;將x=0代入中,解得y=c∴點C的坐標為(0,c)∵∴點A的坐標為(c,0)∵拋物線交軸于點和點∴x=c和x=2是方程的兩個根根據根與系數的關系:2c=解得:,故②正確;將點A的坐標代入中,可得:將等式的兩邊同時除以c,得:,故③正確;將點B的坐標和代入中,可得:解得:,故④正確.故選:D.【點睛】此題考查的是根據二次函數的圖像,判斷系數或式子的值或符號,掌握二次函數的圖像及性質與各項系數的關系是解決此題的關鍵.11、D【分析】根據配方法的原理,湊成完全平方式即可.【詳解】解:,,,故選D.【點睛】本題主要考查配方法的掌握,關鍵在于一次項的系數等于2倍的二次項系數和常數項的乘積.12、B【解析】根據直接開方法即可求出答案.【詳解】解:∵x2﹣9=0,∴x=±3,故選:B.【點睛】本題考察了直接開方法解方程,注意開方時有兩個根,別丟根二、填空題(每題4分,共24分)13、1.【解析】試題分析:解方程x2-13x+40=0,(x-5)(x-8)=0,∴x1=5,x2=8,∵3+4=7<8,∴x=5.∴周長為3+4+5=1.故答案為1.考點:1一元二次方程;2三角形.14、(-1,2)或(1,-2);(-3,-1)或(3,1)【分析】利用以原點為位似中心,相似比為k,位似圖形對應點的坐標的比等于k或?k,分別把A,B點的橫縱坐標分別乘以或?即可得到點B′的坐標.【詳解】∵以原點O為位似中心,相似比為,把△ABO縮小,∴的對應點A′的坐標是(-1,2)或(1,-2),點B(?9,?3)的對應點B′的坐標是(?3,?1)或(3,1),故答案為:(-1,2)或(1,-2);(-3,-1)或(3,1).【點睛】本題考查了位似變換:在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或?k.15、①③④【分析】由當AB與光線BC垂直時,m最大即可判斷①②,由最小值為AB與底面重合可判斷③,點光源固定,當線段AB旋轉時,影長將隨物高擋住光線的不同位置發生變化過程可判斷④.【詳解】當木桿繞點A按逆時針方向旋轉時,如圖所示當AB與光線BC垂直時,m最大,則m>AC,①成立;
①成立,那么②不成立;
最小值為AB與底面重合,故n=AB,故③成立;
由上可知,影子的長度先增大后減小,④成立.
故答案為:①③④.16、3:2【解析】因為DE∥BC,所以,因為EF∥AB,所以,所以,故答案為:3:2.17、【分析】首先求得拋物線的對稱軸,拋物線開口向上,在頂點處取得最小值,在距對稱軸最遠處取得最大值.【詳解】拋物線的對稱軸是x=1,則當x=1時,y=1?2?3=?1,是最小值;當x=3時,y=9?6?3=0是最大值.的最大值和最小值的和是-1故答案為:-1.【點睛】本題考查了二次函數的圖象和性質,正確理解取得最大值和最小值的條件是關鍵.18、2π.【分析】由題意根據陰影部分的面積是:扇形BAB′的面積+S△AB′C′-S△ABC-扇形CAC′的面積,分別求得:扇形BAB′的面積和S△AB′C′,S△ABC以及扇形CAC′的面積,進而分析即可求解.【詳解】解:扇形BAB′的面積是:,在直角△ABC中,,.扇形CAC′的面積是:,則陰影部分的面積是:扇形BAB′的面積+-扇形CAC′的面積=.故答案為:2π.【點睛】本題考查扇形的面積的計算,正確理解陰影部分的面積是:扇形BAB′的面積+-扇形CAC′的面積是解題的關鍵.三、解答題(共78分)19、(1)見解析;(2)1【分析】(1)根據兩個角對應相等判定兩個三角形相似即可;(2)根據相似三角形的性質,對應邊成比例即可求解.【詳解】(1)證明:四邊形是矩形,,,,.(2).,,,,,,.答:線段的長為1.【點睛】本題考查了相似三角形的判定和性質,解決本題的關鍵是掌握相似三角形的判定方法和性質.20、x1=2x2=2.【分析】應用因式分解法解答即可.【詳解】解:x2﹣6x+8=1(x﹣2)(x﹣2)=1,∴x﹣2=1或x﹣2=1,∴x1=2x2=2.【點睛】本題考查了解一元二次方程﹣因式分解法,解答關鍵是根據方程特點進行因式分解.21、(1)作圖見解析;(2)證明見解析.【分析】(1)作線段AB的垂直一部分線,交AB上方的圓弧上于點D,連接AD,BD,等腰三角形ABD即為所求作;(2)由等腰三角形的性質可求出∠B=30゜,連接OD,利用三角形外角的性質得∠DOB=60゜,再由三角形內角和求得∠ODB=90゜,從而可證得結論.【詳解】(1)如圖所示;(2)∵△ABD是等腰三角形,且∠DAB=30°,∴∠DBA=30゜,連接OD,∵OA=OD∴∠ODA=∠OAD=30゜∴∠DOB=∠ODA+∠OAD=60゜在△ODB中,∠DOB+∠ODB+∠DBO=180゜∴∠ODB=180゜-∠DOB-∠DBO=90゜,即∴直線BD與⊙O相切.【點睛】本題考查的是切線的判定,掌握“連交點,證垂直”是解決這類問題的常用解題思路.22、(1)見解析;(2)DB=5.【分析】(1)根據兩角相等的兩個三角形相似即可證得結論;(2)根據相似三角形的對應邊成比例即可求得AB的長,進而可得結果.【詳解】解:(1)∵∠B=∠ACD,∠A=∠A,∴△ABC∽△ACD;(2)∵△ABC∽△ACD,∴,即,解得AB=9,∴DB=AB-AD=5.【點睛】本題考查了相似三角形的判定和性質,屬于基礎題型,熟練掌握相似三角形的判定和性質是解題關鍵.23、(1);(2).【分析】(1)直接利用概率公式求解;(2)畫樹狀圖展示所有12種等可能的結果數,利用一次函數的性質,找出a、b異號的結果數,然后根據概率公式求解.【詳解】(1)∵共由4種可能,抽到的數字大于0的有2種,∴從中任意抽取1張,抽到的數字大于0的概率是,故答案為:(2)畫樹狀圖為:共有12種等可能的結果數,其中a、b異號有8種結果,∴這個二次函數的圖象的對稱軸在y軸右側的概率為=.【點睛】此題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數與總情況數之比,熟練掌握a、b異號時,對稱軸在y軸右側是解題關鍵.24、(1);(2)當時,隨的增大而減少【分析】(1)根據二次函數的定義得出k2+k-4=2,再利用函數圖象有最高點,得出k+2<0,即可得出k的值;(2)利用(1)中k的值得出二次函數的解析式,利用形如y=ax2(a≠0)的二次函數頂點坐標為(0,0),對稱軸是y軸即可得出答案.【詳解】(1)∵是二次函數,∴k2+k-4=2且k+2≠0,解得k=-1或k=2,∵函數有最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 炎黃職業技術學院《大學體育3》2023-2024學年第二學期期末試卷
- 陜西省寶雞一中學2025屆初三畢業班調研測試語文試題含解析
- 寧波衛生職業技術學院《應用開發框架技術》2023-2024學年第二學期期末試卷
- 新疆石河子職業技術學院《嵌入式系統及安全》2023-2024學年第二學期期末試卷
- 模電 第23講 正弦波振蕩電路學習資料
- 山東青島市2024-2025學年下學期高三模擬物理試題含解析
- 江西冶金職業技術學院《西南版畫拓展之多媒體版畫》2023-2024學年第二學期期末試卷
- 二零二五傭金結算協議書
- 二零二五版離婚訴訟起訴
- 二零二五版辦公用品購買合同書
- 2024年云南省煙草專賣局畢業生招聘考試真題
- 電動汽車安全駕駛培訓
- 短視頻平臺對獨立音樂人的影響研究-全面剖析
- 2024年國家廣播電視總局直屬事業單位招聘真題
- 特種設備安全使用操作培訓課件3
- 中國急性缺血性卒中診治指南解讀(完整版)
- 水磨鉆專項方水磨鉆專項方案
- 2024重慶三峰環境集團股份有限公司招聘15人筆試參考題庫附帶答案詳解
- 2024年吉林銀行總行招聘筆試真題
- 供應鏈管理師考試的終極試題及答案
- 2025安徽中醫藥大學輔導員考試題庫
評論
0/150
提交評論