




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,AB是⊙O的直徑,CD⊥AB,∠ABD=60°,CD=2,則陰影部分的面積為()A. B.π C.2π D.4π2.如圖,在?ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,若BG=,則△CEF的面積是()A. B. C. D.3.對于反比例函數y=,下列說法正確的是()A.圖象經過點(1,﹣1) B.圖象關于y軸對稱C.圖象位于第二、四象限 D.當x<0時,y隨x的增大而減小4.如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABC繞A逆時針方向旋轉40°得到△ADE,點B經過的路徑為弧BD,是圖中陰影部分的面積為()A.π﹣6 B.π C.π﹣3 D.+π5.一塊△ABC空地栽種花草,∠A=150°,AB=20m,AC=30m,則這塊空地可栽種花草的面積為()m2A.450 B.300 C.225 D.1506.如圖,在△ABC中,DE∥BC,AD=8,DB=4,AE=6,則EC的長為()A.1 B.2 C.3 D.47.小明和小華玩“石頭、剪子、布”的游戲.若隨機出手一次,則小華獲勝的概率是()A. B. C. D.8.在同一平面直角坐標系中,一次函數y=ax+b和二次函數y=ax2+bx+c的圖象可能為()A. B.C. D.9.要使式子有意義,則x的值可以是()A.2 B.0 C.1 D.910.如圖,四邊形內接于,延長交于點,連接.若,,則的度數為()A. B. C. D.二、填空題(每小題3分,共24分)11.已知二次函數y=3x2+2x,當﹣1≤x≤0時,函數值y的取值范圍是_____.12.如圖,的直徑垂直弦于點,且,,則弦__________.13.如圖,正方形ABCD的邊長為,E,F分別是AB,BC的中點,AF與DE,DB分別交于點M,N,則△DMN的面積=.14.已知關于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有兩個實數根,則m的取值范圍是_____.15.已知m是方程x2﹣3x﹣1=0的一個根,則代數式2m2﹣6m﹣7的值等于_____.16.若二次函數的對稱軸為直線,則關于的方程的解為______.17.如圖,平行四邊形ABCD的一邊AB在x軸上,長為5,且∠DAB=60°,反比例函數y=和y=分別經過點C,D,則AD=_____.18.拋物線y=x2+2x﹣3的對稱軸是_____.三、解答題(共66分)19.(10分)如圖,在由邊長為1的小正方形組成的網格中,△ABC的頂點均落在格點上.(1)將△ABC繞點O順時針旋轉90°后,得到△A1B1C1.在網格中畫出△A1B1C1;(2)求線段OA在旋轉過程中掃過的圖形面積;(結果保留π)20.(6分)某校有一露天舞臺,縱斷面如圖所示,AC垂直于地面,AB表示樓梯,AE為舞臺面,樓梯的坡角∠ABC=45°,坡長AB=2m,為保障安全,學校決定對該樓梯進行改造,降低坡度,擬修新樓梯AD,使∠ADC=30°(1)求舞臺的高AC(結果保留根號)(2)樓梯口B左側正前方距離舞臺底部C點3m處的文化墻PM是否要拆除?請說明理由.21.(6分)如圖,二次函數的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數圖象上的一對對稱點,一次函數的圖象過點B、D.(1)請直接寫出D點的坐標.(2)求二次函數的解析式.(3)根據圖象直接寫出使一次函數值大于二次函數值的x的取值范圍.22.(8分)如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點,OD⊥AC,垂足為E,連接BD.(1)求證:BD平分∠ABC;(2)當∠ODB=30°時,求證:BC=OD.23.(8分)開學初,某文具店銷售一款書包,每個成本是50元,銷售期間發現:銷售單價時100元時,每天的銷售量是50個,而銷售單價每降低2元,每天就可多售出10個,當銷售單價為多少元時,每天的銷售利潤達到4000元?要求銷售單價不低于成本,且商家盡量讓利給顧客.24.(8分)如圖,在Rt△ABC中,∠BAC=90°,BD是角平分線,以點D為圓心,DA為半徑的⊙D與AC相交于點E.(1)求證:BC是⊙D的切線;(2)若AB=5,BC=13,求CE的長.25.(10分)箱子里有4瓶牛奶,其中有一瓶是過期的.現從這4瓶牛奶中任意抽取牛奶飲用,抽取任意一瓶都是等可能的.(1)若小芳任意抽取1瓶,抽到過期的一瓶的概率是;(2)若小芳任意抽取2瓶,請用畫樹狀圖或列表法求,抽出的2瓶牛奶中恰好抽到過期牛奶的概率.26.(10分)武漢市某中學進行九年級理化實驗考查,有A和B兩個考查實驗,規定每位學生只參加一個實驗的考查,并由學生自己抽簽決定具體的考查實驗,小孟、小柯、小劉都要參加本次考查.(1)用列表或畫樹狀圖的方法求小孟、小柯都參加實驗A考查的概率;(2)他們三人中至少有兩人參加實驗B的概率(直接寫出結果).
參考答案一、選擇題(每小題3分,共30分)1、A【解析】試題解析:連接OD.∵CD⊥AB,故,即可得陰影部分的面積等于扇形OBD的面積,又∴OC=2,∴S扇形OBD即陰影部分的面積為故選A.點睛:垂徑定理:垂直于弦的直徑平分弦并且平分弦所對的兩條弧.2、A【詳解】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足為G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,∴AG==2,∴AE=2AG=4;∴S△ABE=AE?BG=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,則S△CEF=S△ABE=.故選A.【點睛】本題考查1.相似三角形的判定與性質;2.平行四邊形的性質,綜合性較強,掌握相關性質定理正確推理論證是解題關鍵.3、D【解析】A選項:∵1×(-1)=-1≠1,∴點(1,-1)不在反比例函數y=的圖象上,故本選項錯誤;
B選項:反比例函數的圖象關于原點中心對稱,故本選項錯誤;
C選項:∵k=1>0,∴圖象位于一、三象限,故本選項錯誤;
D選項:∵k=1>0,∴當x<0時,y隨x的增大而減小,故是正確的.
故選B.4、B【解析】根據AB=5,AC=3,BC=4和勾股定理的逆定理判斷三角形的形狀,根據旋轉的性質得到△AED的面積=△ABC的面積,得到陰影部分的面積=扇形ADB的面積,根據扇形面積公式計算即可.【詳解】解:∵AB=5,AC=3,BC=4,∴△ABC為直角三角形,由題意得,△AED的面積=△ABC的面積,由圖形可知,陰影部分的面積=△AED的面積+扇形ADB的面積﹣△ABC的面積,∴陰影部分的面積=扇形ADB的面積=,故選B.【點睛】考查的是扇形面積的計算、旋轉的性質和勾股定理的逆定理,根據圖形得到陰影部分的面積=扇形ADB的面積是解題的關鍵.5、D【分析】過點B作BE⊥AC,根據含30度角的直角三角形性質可求得BE,再根據三角形的面積公式求出答案.【詳解】過點B作BE⊥AC,交CA延長線于E,則∠E=90°,
∵,
∴,
∵在中,,,
∴,
∴這塊空地可栽種花草的面積為.故選:D【點睛】本題考查了含30度角的直角三角形性質和三角形的面積公式,是基礎知識比較簡單.6、C【分析】根據平行線所截的直線形成的線段的比例關系,可得,代數解答即可.【詳解】解:由題意得,,,解得.【點睛】本題考查了平行線截取直線所得的對應線段的比例關系,理解掌握該比例關系列出比例式是解答關鍵.7、A【分析】首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與小華獲勝的情況數,再利用概率公式即可求得答案.【詳解】解:畫樹狀圖得:
∵共有9種等可能的結果,小華獲勝的情況數是3種,
∴小華獲勝的概率是:=.
故選:A.【點睛】此題主要考查了列表法和樹狀圖法求概率知識,用到的知識點為:概率=所求情況數與總情況數之比.8、A【分析】本題可先由二次函數y=ax2+bx+c圖象得到字母系數的正負,再與一次函數y=ax+b的圖象相比較看是否一致.【詳解】A、由拋物線可知,a<0,x=﹣<0,得b<0,由直線可知,a<0,b<0,故本選項正確;B、由拋物線可知,a>0,由直線可知,a<0,故本選項錯誤;C、由拋物線可知,a>0,x=﹣>0,得b<0,由直線可知,a>0,b>0,故本選項錯誤;D、由拋物線可知,a>0,由直線可知,a<0,故本選項錯誤.故選A.9、D【解析】式子為二次根式,根據二次根式的性質,被開方數大于等于0,可得x-50,解不等式就可得到答案.【詳解】∵式子有意義,∴x-50,∴x5,觀察個選項,可以發現x的值可以是9.故選D.【點睛】本題考查二次根式有意義的條件.10、B【分析】根據圓內接四邊形的性質得到∠DAB,進而求出∠EAB,根據圓周角定理得到∠EBA=90°,根據直角三角形兩銳角互余即可得出結論.【詳解】∵四邊形ABCD內接于⊙O,∴∠DAB=180°﹣∠C=180°﹣100°=80°.∵∠DAE=50°,∴∠EAB=∠DAB-∠DAE=80°-50°=30°.∵AE是⊙O的直徑,∴∠EBA=90°,∴∠E=90°﹣∠EAB=90°-30°=60°.故選:B.【點睛】本題考查了圓內接四邊形的性質、圓周角定理,掌握圓內接四邊形的對角互補是解題的關鍵.二、填空題(每小題3分,共24分)11、﹣≤y≤1【分析】利用配方法轉化二次函數求出對稱軸,根據二次函數的性質即可求解.【詳解】∵y=3x2+2x=3(x+)2﹣,∴函數的對稱軸為x=﹣,∴當﹣1≤x≤0時,函數有最小值﹣,當x=﹣1時,有最大值1,∴y的取值范圍是﹣≤y≤1,故答案為﹣≤y≤1.【點睛】本題考查二次函數的性質、一般式和頂點式之間的轉化,解題的關鍵是熟練掌握二次函數的性質.12、【分析】先根據題意得出⊙O的半徑,再根據勾股定理求出BE的長,進而可得出結論.【詳解】連接OB,∵,,∴OC=OB=(CE+DE)=5,∵CE=3,∴OE=5?3=2,∵CD⊥AB,∴BE==.∴AB=2BE=.故答案為:.【點睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關鍵.13、1.【分析】首先連接DF,由四邊形ABCD是正方形,可得△BFN∽△DAN,又由E,F分別是AB,BC的中點,可得=2,△ADE≌△BAF(SAS),然后根據相似三角形的性質與勾股定理,可求得AN,MN的長,即可得MN:AF的值,再利用同高三角形的面積關系,求得△DMN的面積.【詳解】連接DF,
∵四邊形ABCD是正方形,
∴AD∥BC,AD=BC=,
∴△BFN∽△DAN,
∴,
∵F是BC的中點,
∴,
∴AN=2NF,
∴,
在Rt△ABF中,
∴,
∵E,F分別是AB,BC的中點,AD=AB=BC,
∴,
∵∠DAE=∠ABF=90°,
在△ADE與△BAF中,
,
∴△ADE≌△BAF(SAS),
∴∠AED=∠AFB,
∴∠AME=110°-∠BAF-∠AED=110°-∠BAF-∠AFB=90°.
∴,
∴,
∴.
又,
∴.
故答案為:1.14、且.【詳解】∵關于x的一元二次方程(m﹣1)1x1+(1m+1)x+1=0有兩個不相等的實數根,∴△=b1﹣4ac>0,即(1m+1)1﹣4×(m﹣1)1×1>0,解這個不等式得,m>,又∵二次項系數是(m﹣1)1≠0,∴m≠1故M得取值范圍是m>且m≠1.故答案為m>且m≠1.考點:根的判別式15、﹣1.【分析】根據一元二次方程的解的概念可得關于m的方程,變形后整體代入所求式子即得答案.【詳解】解:∵m是方程x2﹣3x﹣1=0的一個根,∴m2﹣3m﹣1=0,∴m2﹣3m=1,∴2m2﹣6m﹣7=2(m2﹣3m)﹣7=2×1﹣7=﹣1.故答案為:﹣1.【點睛】本題考查了一元二次方程的解的概念和代數式求值,熟練掌握整體代入的數學思想和一元二次方程的解的概念是解題關鍵.16、,【分析】根據對稱軸方程求得b,再代入解一元二次方程即可.【詳解】解:∵二次函數y=x2+bx-5的對稱軸為直線x=1,∴=1,即b=-2∴解得:,故答案為,.【點睛】本題主要考查的是拋物線與x軸的交點、一元二次方程等知識,根據拋物線的對稱軸確定b的值是解答本題的關鍵.17、1【分析】設點C(),則點D(),然后根據CD的長列出方程,求得x的值,得到D的坐標,解直角三角形求得AD.【詳解】解:設點C(),則點D(),∴CD=x﹣()=∵四邊形ABCD是平行四邊形,∴CD=AB=5,∴=5,解得x=1,∴D(﹣3,),作DE⊥AB于E,則DE=,∵∠DAB=60°,故答案為:1.【點睛】本題考查的是平行四邊形的性質、反比例性質、特殊角的三角函數值,利用平行四邊形性質和反比例函數的性質列出等式是解題的關鍵.18、x=﹣1【分析】直接利用二次函數對稱軸公式求出答案.【詳解】拋物線y=x2+2x﹣3的對稱軸是:直線x=﹣=﹣=﹣1.故答案為:直線x=﹣1.【點睛】此題主要考查了二次函數的性質,正確記憶二次函數對稱軸公式是解題關鍵.三、解答題(共66分)19、(1)見解析;(2)掃過的圖形面積為2π.【解析】(1)先確定A、B、C三點分別繞O點旋轉90°后的點的位置,再順次連接即可得到所求圖形;(2)先運用勾股定理求解出OA的長度,再求以OA為半徑、圓心角為90°的扇形面積即可.【詳解】(1)如圖,先確定A、B、C三點分別繞O點旋轉90°后的點A1、B1、C1,再順次連接即可得到所求圖形,△A1B1C1即為所求三角形;(2)由勾股定理可知OA=,線段OA在旋轉過程中掃過的圖形為以OA為半徑,∠AOA1為圓心角的扇形,則S扇形OAA1=答:掃過的圖形面積為2π.【點睛】本題結合網格線考查了旋轉作圖以及扇形面積公式,熟記相關公式是解題的關鍵.20、(1)m;(2)不需拆除文化墻PM,理由見解析.【分析】(1)根據銳角三角函數,即可求出AC;(2)由題意可知:CM=3m,根據銳角三角函數即可求出DC,最后比較DC和CM的大小即可判斷.【詳解】解:(1)在Rt△ABC中,∠ABC=45°,坡長AB=2m,∴AC=AB·sin∠ABC=m答:舞臺的高AC為m;(2)不需拆除文化墻PM,理由如下,由題意可知:CM=3m在Rt△ADC中,∠ADC=30°,AC=m∴DC=m∵m<3m∴DC<CM∴不需拆除文化墻PM.【點睛】此題考查的是解直角三角形的應用,掌握用銳角三角函數解直角三角形是解決此題的關鍵.21、(1)D(﹣2,3);(2)二次函數的解析式為y=﹣x2﹣2x+3;(3)一次函數值大于二次函數值的x的取值范圍是x<﹣2或x>1.【詳解】試題分析:(1)由拋物線的對稱性來求點D的坐標;(2)設二次函數的解析式為y=ax2+bx+c(a≠0,a、b、c常數),把點A、B、C的坐標分別代入函數解析式,列出關于系數a、b、c的方程組,通過解方程組求得它們的值即可;(3)由圖象直接寫出答案.試題解析:(1)∵如圖,二次函數的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,∴對稱軸是x==﹣1.又點C(0,3),點C、D是二次函數圖象上的一對對稱點,∴D(﹣2,3);(2)設二次函數的解析式為y=ax2+bx+c(a≠0,a、b、c常數),根據題意得,解得,所以二次函數的解析式為y=﹣x2﹣2x+3;(3)如圖,一次函數值大于二次函數值的x的取值范圍是x<﹣2或x>1.考點:1、拋物線與x軸的交點;2、待定系數法;3、二次函數與不等式(組).22、(1)證明見解析;(2)證明見解析.【分析】(1)由OD⊥ACOD為半徑,根據垂徑定理,即可得,又由在同圓或等圓中,同弧或等弧所對的圓周角相等,即可證得BD平分∠ABC;(2)首先由OB=OD,易求得∠AOD的度數,又由OD⊥AC于E,可求得∠A的度數,然后由AB是⊙O的直徑,根據圓周角定理,可得∠ACB=90°,繼而可證得BC=OD.【詳解】(1)∵OD⊥ACOD為半徑,∴,∴∠CBD=∠ABD,∴BD平分∠ABC;(2)∵OB=OD,∴∠OBD=∠0DB=30°,∴∠AOD=∠OBD+∠ODB=30°+30°=60°,又∵OD⊥AC于E,∴∠OEA=90°,∴∠A=180°﹣∠OEA﹣∠AOD=180°﹣90°﹣60°=30°,又∵AB為⊙O的直徑,∴∠ACB=90°,在Rt△ACB中,BC=AB,∵OD=AB,∴BC=OD.23、銷售單價為70元時,每天的銷售利潤達到4000元,且商家盡量讓利顧客.【分析】根據“單件利潤×銷售量=總利潤”可列一元二次方程求解,結合題意取舍可得【詳解】解:設銷售單價為x元時,每天的銷售利潤達到4000元,由題意得,(x﹣50)[50+5(100﹣x)]=4000,解得x1=70,x2=90,因為晨光文具店銷售單價不低于成本,且商家盡量讓利顧客,所以x2=90不符合題意舍去,故x=70,答:銷售單價為70元時,每天的銷售利潤達到4000元,且商家盡量讓利顧客.【點睛】本題主要考查一元二次方程的應用,理解題意確定相等關系,并據此列出方程是解題的關鍵.24、(1)證明詳見解析;(2).【解析】試題分析:(1)過點D作DF⊥BC于點F,根據角平分線的性質得到AD=DF.根據切線的判定定理即可得到結論;(2)根據切
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 法學概論的條款研究與試題及答案
- 電廠地震火災應急預案(3篇)
- 行政法學知識拓展試題及答案解析
- 2025年VB考試全解及試題及答案
- 經典法學概論考題試題及答案
- 醫院整體規劃與未來發展方向計劃
- 2025珠寶首飾等質押合同
- 門診部護士長工作計劃
- 2025年網絡管理員考試評估標準試題及答案
- 2025年考試過來人的建議試題及答案
- 大樹遮陽腳手架搭設方案
- “危大工程”驗收標識牌
- 人民幣的故事(課堂PPT)
- 生產異常及停線管理規范(1)
- 學生英語讀寫情況調查分析報告(二)
- 河北工業大學本科生體育課程考核管理辦法-河北工業大學本科生院
- 病房發生火災應急預案
- 熱學李椿__電子
- 煤倉安全管理規范標準
- 適配器安裝、使用、調試說明
- 施工現場事故應急預案處理程序
評論
0/150
提交評論