山東、湖北部分重點(diǎn)中學(xué)2025屆高三下質(zhì)量檢測(cè)試題(5月)數(shù)學(xué)試題含解析_第1頁(yè)
山東、湖北部分重點(diǎn)中學(xué)2025屆高三下質(zhì)量檢測(cè)試題(5月)數(shù)學(xué)試題含解析_第2頁(yè)
山東、湖北部分重點(diǎn)中學(xué)2025屆高三下質(zhì)量檢測(cè)試題(5月)數(shù)學(xué)試題含解析_第3頁(yè)
山東、湖北部分重點(diǎn)中學(xué)2025屆高三下質(zhì)量檢測(cè)試題(5月)數(shù)學(xué)試題含解析_第4頁(yè)
山東、湖北部分重點(diǎn)中學(xué)2025屆高三下質(zhì)量檢測(cè)試題(5月)數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東、湖北部分重點(diǎn)中學(xué)2025屆高三下質(zhì)量檢測(cè)試題(5月)數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將函數(shù)圖象向右平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),則函數(shù)在上的值域是()A. B. C. D.2.設(shè)是等差數(shù)列的前n項(xiàng)和,且,則()A. B. C.1 D.23.設(shè)是虛數(shù)單位,復(fù)數(shù)()A. B. C. D.4.“”是“函數(shù)的圖象關(guān)于直線對(duì)稱(chēng)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知實(shí)數(shù),則的大小關(guān)系是()A. B. C. D.6.已知函數(shù)若對(duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,則實(shí)數(shù)的取值范圍是()A. B. C. D.7.為研究語(yǔ)文成績(jī)和英語(yǔ)成績(jī)之間是否具有線性相關(guān)關(guān)系,統(tǒng)計(jì)兩科成績(jī)得到如圖所示的散點(diǎn)圖(兩坐標(biāo)軸單位長(zhǎng)度相同),用回歸直線近似地刻畫(huà)其相關(guān)關(guān)系,根據(jù)圖形,以下結(jié)論最有可能成立的是()A.線性相關(guān)關(guān)系較強(qiáng),b的值為1.25B.線性相關(guān)關(guān)系較強(qiáng),b的值為0.83C.線性相關(guān)關(guān)系較強(qiáng),b的值為-0.87D.線性相關(guān)關(guān)系太弱,無(wú)研究?jī)r(jià)值8.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個(gè)單位長(zhǎng)度而得到,則函數(shù)的解析式為()A. B.C. D.9.記遞增數(shù)列的前項(xiàng)和為.若,,且對(duì)中的任意兩項(xiàng)與(),其和,或其積,或其商仍是該數(shù)列中的項(xiàng),則()A. B.C. D.10.如圖,將兩個(gè)全等等腰直角三角形拼成一個(gè)平行四邊形,將平行四邊形沿對(duì)角線折起,使平面平面,則直線與所成角余弦值為()A. B. C. D.11.設(shè)、是兩條不同的直線,、是兩個(gè)不同的平面,則的一個(gè)充分條件是()A.且 B.且 C.且 D.且12.函數(shù)的一個(gè)零點(diǎn)在區(qū)間內(nèi),則實(shí)數(shù)a的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積是_____;最長(zhǎng)棱的長(zhǎng)度是_____.14.已知三棱錐的四個(gè)頂點(diǎn)都在球的球面上,,則球的表面積為_(kāi)_________.15.如圖所示,邊長(zhǎng)為1的正三角形中,點(diǎn),分別在線段,上,將沿線段進(jìn)行翻折,得到右圖所示的圖形,翻折后的點(diǎn)在線段上,則線段的最小值為_(kāi)______.16.已知為橢圓內(nèi)一定點(diǎn),經(jīng)過(guò)引一條弦,使此弦被點(diǎn)平分,則此弦所在的直線方程為_(kāi)_______________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,,分別為內(nèi)角,,的對(duì)邊,若同時(shí)滿(mǎn)足下列四個(gè)條件中的三個(gè):①;②;③;④.(1)滿(mǎn)足有解三角形的序號(hào)組合有哪些?(2)在(1)所有組合中任選一組,并求對(duì)應(yīng)的面積.(若所選條件出現(xiàn)多種可能,則按計(jì)算的第一種可能計(jì)分)18.(12分)如圖,已知,分別是正方形邊,的中點(diǎn),與交于點(diǎn),,都垂直于平面,且,,是線段上一動(dòng)點(diǎn).(1)當(dāng)平面,求的值;(2)當(dāng)是中點(diǎn)時(shí),求四面體的體積.19.(12分)已知等腰梯形中(如圖1),,,為線段的中點(diǎn),、為線段上的點(diǎn),,現(xiàn)將四邊形沿折起(如圖2)(1)求證:平面;(2)在圖2中,若,求直線與平面所成角的正弦值.20.(12分)已知函數(shù).(1)若對(duì)任意x0,f(x)0恒成立,求實(shí)數(shù)a的取值范圍;(2)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2(x1x2),證明:.21.(12分)某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產(chǎn)品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成.在此區(qū)域內(nèi)原有一個(gè)以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎(chǔ)上,將其改建成一個(gè)凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點(diǎn).已知長(zhǎng)為40米,設(shè)為.(上述圖形均視作在同一平面內(nèi))(1)記四邊形的周長(zhǎng)為,求的表達(dá)式;(2)要使改建成的展示區(qū)的面積最大,求的值.22.(10分)已知函數(shù).(1)當(dāng)時(shí),不等式恒成立,求的最小值;(2)設(shè)數(shù)列,其前項(xiàng)和為,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對(duì)稱(chēng)性,余弦函數(shù)的值域,求得結(jié)果.【詳解】解:把函數(shù)圖象向右平移個(gè)單位長(zhǎng)度后,可得的圖象;再根據(jù)得到函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),,,,函數(shù).在上,,,故,即的值域是,故選:D.本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對(duì)稱(chēng)性,余弦函數(shù)的值域,屬于中檔題.2.C【解析】

利用等差數(shù)列的性質(zhì)化簡(jiǎn)已知條件,求得的值.【詳解】由于等差數(shù)列滿(mǎn)足,所以,,.故選:C本小題主要考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.3.D【解析】

利用復(fù)數(shù)的除法運(yùn)算,化簡(jiǎn)復(fù)數(shù),即可求解,得到答案.【詳解】由題意,復(fù)數(shù),故選D.本題主要考查了復(fù)數(shù)的除法運(yùn)算,其中解答中熟記復(fù)數(shù)的除法運(yùn)算法則是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.4.A【解析】

先求解函數(shù)的圖象關(guān)于直線對(duì)稱(chēng)的等價(jià)條件,得到,分析即得解.【詳解】若函數(shù)的圖象關(guān)于直線對(duì)稱(chēng),則,解得,故“”是“函數(shù)的圖象關(guān)于直線對(duì)稱(chēng)”的充分不必要條件.故選:A本題考查了充分不必要條件的判斷,考查了學(xué)生邏輯推理,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.5.B【解析】

根據(jù),利用指數(shù)函數(shù)對(duì)數(shù)函數(shù)的單調(diào)性即可得出.【詳解】解:∵,∴,,.∴.故選:B.本題考查了指數(shù)函數(shù)對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.6.C【解析】分析:先求導(dǎo),再對(duì)a分類(lèi)討論求函數(shù)的單調(diào)區(qū)間,再畫(huà)圖分析轉(zhuǎn)化對(duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,得到關(guān)于a的不等式組,再解不等式組得到實(shí)數(shù)a的取值范圍.詳解:由題得.當(dāng)a<1時(shí),,所以函數(shù)f(x)在單調(diào)遞減,因?yàn)閷?duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,所以故a≥1,與a<1矛盾,故a<1矛盾.當(dāng)1≤a<e時(shí),函數(shù)f(x)在[0,lna]單調(diào)遞增,在(lna,1]單調(diào)遞減.所以因?yàn)閷?duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,所以即令,所以所以函數(shù)g(a)在(1,e)上單調(diào)遞減,所以,所以當(dāng)1≤a<e時(shí),滿(mǎn)足題意.當(dāng)a時(shí),函數(shù)f(x)在(0,1)單調(diào)遞增,因?yàn)閷?duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,故1+1,所以故綜上所述,a∈.故選C.點(diǎn)睛:本題的難點(diǎn)在于“對(duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有”的轉(zhuǎn)化.由于是函數(shù)的問(wèn)題,所以我們要聯(lián)想到利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、周期性、對(duì)稱(chēng)性、最值、極值等)來(lái)分析解答問(wèn)題.本題就是把這個(gè)條件和函數(shù)的單調(diào)性和最值聯(lián)系起來(lái),完成了數(shù)學(xué)問(wèn)題的等價(jià)轉(zhuǎn)化,找到了問(wèn)題的突破口.7.B【解析】

根據(jù)散點(diǎn)圖呈現(xiàn)的特點(diǎn)可以看出,二者具有相關(guān)關(guān)系,且斜率小于1.【詳解】散點(diǎn)圖里變量的對(duì)應(yīng)點(diǎn)分布在一條直線附近,且比較密集,故可判斷語(yǔ)文成績(jī)和英語(yǔ)成績(jī)之間具有較強(qiáng)的線性相關(guān)關(guān)系,且直線斜率小于1,故選B.本題主要考查散點(diǎn)圖的理解,側(cè)重考查讀圖識(shí)圖能力和邏輯推理的核心素養(yǎng).8.A【解析】

由圖根據(jù)三角函數(shù)圖像的對(duì)稱(chēng)性可得,利用周期公式可得,再根據(jù)圖像過(guò),即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因?yàn)楹瘮?shù)的圖象由圖象向右平移個(gè)單位長(zhǎng)度而得到,所以.故選:A本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎(chǔ)題.9.D【解析】

由題意可得,從而得到,再由就可以得出其它各項(xiàng)的值,進(jìn)而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項(xiàng),或者或者是該數(shù)列中的項(xiàng),又?jǐn)?shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項(xiàng),同理可以得到,,,也是該數(shù)列中的項(xiàng),且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.本題考查數(shù)列的新定義的理解和運(yùn)用,以及運(yùn)算能力和推理能力,屬于中檔題.10.C【解析】

利用建系,假設(shè)長(zhǎng)度,表示向量與,利用向量的夾角公式,可得結(jié)果.【詳解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作軸//,建立空間直角坐標(biāo)系如圖設(shè),所以則所以所以故選:C本題考查異面直線所成成角的余弦值,一般采用這兩種方法:(1)將兩條異面直線作輔助線放到同一個(gè)平面,然后利用解三角形知識(shí)求解;(2)建系,利用空間向量,屬基礎(chǔ)題.11.B【解析】由且可得,故選B.12.C【解析】

顯然函數(shù)在區(qū)間內(nèi)連續(xù),由的一個(gè)零點(diǎn)在區(qū)間內(nèi),則,即可求解.【詳解】由題,顯然函數(shù)在區(qū)間內(nèi)連續(xù),因?yàn)榈囊粋€(gè)零點(diǎn)在區(qū)間內(nèi),所以,即,解得,故選:C本題考查零點(diǎn)存在性定理的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由三視圖還原原幾何體,該幾何體為四棱錐,底面為直角梯形,,,側(cè)棱底面,由棱錐體積公式求棱錐體積,由勾股定理求最長(zhǎng)棱的長(zhǎng)度.【詳解】由三視圖還原原幾何體如下圖所示:該幾何體為四棱錐,底面為直角梯形,,,側(cè)棱底面,則該幾何體的體積為,,,因此,該棱錐的最長(zhǎng)棱的長(zhǎng)度為.故答案為:;.本題考查由三視圖求體積、棱長(zhǎng),關(guān)鍵是由三視圖還原原幾何體,是中檔題.14.【解析】

如圖所示,將三棱錐補(bǔ)成長(zhǎng)方體,球?yàn)殚L(zhǎng)方體的外接球,長(zhǎng)、寬、高分別為,計(jì)算得到,得到答案.【詳解】如圖所示,將三棱錐補(bǔ)成長(zhǎng)方體,球?yàn)殚L(zhǎng)方體的外接球,長(zhǎng)、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.本題考查了三棱錐的外接球問(wèn)題,意在考查學(xué)生的計(jì)算能力和空間想象能力,將三棱錐補(bǔ)成長(zhǎng)方體是解題的關(guān)鍵.15.【解析】

設(shè),,在中利用正弦定理得出關(guān)于的函數(shù),從而可得的最小值.【詳解】解:設(shè),,則,,∴,在中,由正弦定理可得,即,∴,∴當(dāng)即時(shí),取得最小值.故答案為.本題考查正弦定理解三角形的應(yīng)用,屬中檔題.16.【解析】

設(shè)弦所在的直線與橢圓相交于、兩點(diǎn),利用點(diǎn)差法可求得直線的斜率,進(jìn)而可求得直線的點(diǎn)斜式方程,化為一般式即可.【詳解】設(shè)弦所在的直線與橢圓相交于、兩點(diǎn),由于點(diǎn)為弦的中點(diǎn),則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.本題考查利用弦的中點(diǎn)求弦所在直線的方程,一般利用點(diǎn)差法,也可以利用韋達(dá)定理設(shè)而不求法來(lái)解答,考查計(jì)算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)①,③,④或②,③,④;(2).【解析】

(1)由①可求得的值,由②可求出角的值,結(jié)合題意得出,推出矛盾,可得出①②不能同時(shí)成為的條件,由此可得出結(jié)論;(2)在符合條件的兩組三角形中利用余弦定理和正弦定理求出對(duì)應(yīng)的邊和角,然后利用三角形的面積公式可求出的面積.【詳解】(1)由①得,,所以,由②得,,解得或(舍),所以,因?yàn)?,且,所以,所以,矛?所以不能同時(shí)滿(mǎn)足①,②.故滿(mǎn)足①,③,④或②,③,④;(2)若滿(mǎn)足①,③,④,因?yàn)椋裕?解得.所以的面積.若滿(mǎn)足②,③,④由正弦定理,即,解得,所以,所以的面積.本題考查三角形能否成立的判斷,同時(shí)也考查了利用正弦定理和余弦定理解三角形,以及三角形面積的計(jì)算,要結(jié)合三角形已知元素類(lèi)型合理選擇正弦定理或余弦定理解三角形,考查運(yùn)算求解能力,屬于中等題.18.(1).(2)【解析】

(1)利用線面垂直的性質(zhì)得出,進(jìn)而得出,利用相似三角形的性質(zhì),得出,從而得出的值;(2)利用線面垂直的判定定理得出平面,進(jìn)而得出四面體的體積,計(jì)算出,,即可得出四面體的體積.【詳解】(1)因?yàn)槠矫妫矫妫杂忠驗(yàn)椋即怪庇谄矫?,所以又,分別是正方形邊,的中點(diǎn),且,所以.(2)因?yàn)?,分別是正方形邊,的中點(diǎn),所以又因?yàn)?,都垂直于平面,平面,所以因?yàn)槠矫?,所以平面所以,四面體的體積,所以.本題主要考查了線面垂直的性質(zhì)定理的應(yīng)用,以及求棱錐的體積,屬于中檔題.19.(1)見(jiàn)解析;(2).【解析】

(1)先連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)在圖2中,過(guò)點(diǎn)作,垂足為,連接,,證明平面平面,得到點(diǎn)在底面上的投影必落在直線上,記為點(diǎn)在底面上的投影,連接,,得出即是直線與平面所成角,再由題中數(shù)據(jù)求解,即可得出結(jié)果.【詳解】(1)連接,因?yàn)榈妊菪沃校ㄈ鐖D1),,,所以與平行且相等,即四邊形為平行四邊形;所以;又為線段的中點(diǎn),為中點(diǎn),易得:四邊形也為平行四邊形,所以;將四邊形沿折起后,平行關(guān)系沒(méi)有變化,仍有:,且,所以翻折后四邊形也為平行四邊形;故;因?yàn)槠矫?,平面,所以平面;?)在圖2中,過(guò)點(diǎn)作,垂足為,連接,,因?yàn)椋矍疤菪蔚母邽椋?,則,;所以;又,,所以,即,所以;又,且平面,平面,所以平面;因此,平面平面;所以點(diǎn)在底面上的投影必落在直線上;記為點(diǎn)在底面上的投影,連接,,則平面;所以即是直線與平面所成角,因?yàn)?,所以,因此,,故;因?yàn)?,所以,因此,故,所?即直線與平面所成角的正弦值為.本題主要考查證明線面平行,以及求直線與平面所成的角,熟記線面平行的判定定理,以及線面角的求法即可,屬于常考題型.20.(1);(2)證明見(jiàn)解析.【解析】

(1)求出,判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值,即求的范圍;(2)由(1)可知,.對(duì)分和兩種情況討論,構(gòu)造函數(shù),利用放縮法和基本不等式證明結(jié)論.【詳解】(1)由,得.令.當(dāng)時(shí),;當(dāng)時(shí),;在上單調(diào)遞增,在上單調(diào)遞減,.對(duì)任意恒成立,.(2)證明:由(1)可知,在上單調(diào)遞增,在上單調(diào)遞減,.若,則,令在上單調(diào)遞增,,.又,在上單調(diào)遞減,.若,則顯然成立.綜上,.又以上兩式左右兩端分別

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論