




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省渭南市富平縣2025年第一次中考適應性考試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在直角坐標系中,等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),直角頂點B在第二象限,等腰直角△BCD的C點在y軸上移動,我們發現直角頂點D點隨之在一條直線上移動,這條直線的解析式是()A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+22.如圖是一個由5個相同的正方體組成的立體圖形,它的俯視圖是()A. B. C. D.3.如圖,點A、B、C是⊙O上的三點,且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點F,則∠BAF等于()A.12.5° B.15° C.20° D.22.5°4.如圖,⊙O的半徑為6,直徑CD過弦EF的中點G,若∠EOD=60°,則弦CF的長等于()A.6 B.6 C.3 D.95.對于有理數x、y定義一種運算“Δ”:xΔy=ax+by+c,其中a、b、c為常數,等式右邊是通常的加法與乘法運算,已知3Δ5=15,4Δ7=28,則1Δ1的值為()A.-1 B.-11 C.1 D.116.下列各式中計算正確的是A. B. C. D.7.已知x1,x2是關于x的方程x2+bx﹣3=0的兩根,且滿足x1+x2﹣3x1x2=5,那么b的值為()A.4B.﹣4C.3D.﹣38.如圖所示,點E是正方形ABCD內一點,把△BEC繞點C旋轉至△DFC位置,則∠EFC的度數是()A.90° B.30° C.45° D.60°9.下列事件中,屬于不確定事件的是()A.科學實驗,前100次實驗都失敗了,第101次實驗會成功B.投擲一枚骰子,朝上面出現的點數是7點C.太陽從西邊升起來了D.用長度分別是3cm,4cm,5cm的細木條首尾順次相連可組成一個直角三角形10.如圖,在△ABC和△BDE中,點C在邊BD上,邊AC交邊BE于點F,若AC=BD,AB=ED,BC=BE,則∠ACB等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個結論:①OA=OD;②AD⊥EF;③當∠BAC=90°時,四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正確的是_________.(填序號)12.如圖所示,D、E之間要挖建一條直線隧道,為計算隧道長度,工程人員在線段AD和AE上選擇了測量點B,C,已知測得AD=100,AE=200,AB=40,AC=20,BC=30,則通過計算可得DE長為_____.13.如圖,已知正方形ABCD中,∠MAN=45°,連接BD與AM,AN分別交于E,F點,則下列結論正確的有_____.①MN=BM+DN②△CMN的周長等于正方形ABCD的邊長的兩倍;③EF1=BE1+DF1;④點A到MN的距離等于正方形的邊長⑤△AEN、△AFM都為等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧設AB=a,MN=b,則≥1﹣1.14.如圖,在矩形ABCD中,AB=,AD=1,把該矩形繞點A順時針旋轉α度得矩形AB′C′D′,點C′落在AB的延長線上,則圖中陰影部分的面積是_____.15.如圖,將一張矩形紙片ABCD沿對角線BD折疊,點C的對應點為,再將所折得的圖形沿EF折疊,使得點D和點A重合若,,則折痕EF的長為______.16.不透明袋子中裝有個球,其中有個紅球、個綠球和個黑球,這些球除顏色外無其他差別.從袋子中隨機取出個球,則它是黑球的概率是_____.三、解答題(共8題,共72分)17.(8分)“C919”大型客機首飛成功,激發了同學們對航空科技的興趣,如圖是某校航模興趣小組獲得的一張數據不完整的航模飛機機翼圖紙,圖中AB∥CD,AM∥BN∥ED,AE⊥DE,請根據圖中數據,求出線段BE和CD的長.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,結果保留小數點后一位)18.(8分)如圖,在平面直角坐標系中,圓M經過原點O,直線與x軸、y軸分別相交于A,B兩點.(1)求出A,B兩點的坐標;(2)若有一拋物線的對稱軸平行于y軸且經過點M,頂點C在圓M上,開口向下,且經過點B,求此拋物線的函數解析式;(3)設(2)中的拋物線交軸于D、E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.19.(8分)某校為了了解九年級學生體育測試成績情況,以九年(1)班學生的體育測試成績為樣本,按A、B、C、D四個等級進行統計,并將統計結果繪制如下兩幅統計圖,請你結合圖中所給信息解答下列問題:(說明:A級:90分﹣100分;B級:75分﹣89分;C級:60分﹣74分;D級:60分以下)(1)寫出D級學生的人數占全班總人數的百分比為,C級學生所在的扇形圓心角的度數為;(2)該班學生體育測試成績的中位數落在等級內;(3)若該校九年級學生共有500人,請你估計這次考試中A級和B級的學生共有多少人?20.(8分)如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB為1.5米,求拉線CE的長(結果保留根號).21.(8分)已知拋物線y=ax2+bx+2過點A(5,0)和點B(﹣3,﹣4),與y軸交于點C.(1)求拋物線y=ax2+bx+2的函數表達式;(2)求直線BC的函數表達式;(3)點E是點B關于y軸的對稱點,連接AE、BE,點P是折線EB﹣BC上的一個動點,①當點P在線段BC上時,連接EP,若EP⊥BC,請直接寫出線段BP與線段AE的關系;②過點P作x軸的垂線與過點C作的y軸的垂線交于點M,當點M不與點C重合時,點M關于直線PC的對稱點為點M′,如果點M′恰好在坐標軸上,請直接寫出此時點P的坐標.22.(10分)為了響應“足球進校園”的目標,某校計劃為學校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.求A,B兩種品牌的足球的單價.求該校購買20個A品牌的足球和2個B品牌的足球的總費用.23.(12分)計算:12+(13)﹣2﹣|1﹣3|﹣(π+1)024.如圖1,拋物線y=ax2+bx+4過A(2,0)、B(4,0)兩點,交y軸于點C,過點C作x軸的平行線與拋物線上的另一個交點為D,連接AC、BC.點P是該拋物線上一動點,設點P的橫坐標為m(m>4).(1)求該拋物線的表達式和∠ACB的正切值;(2)如圖2,若∠ACP=45°,求m的值;(3)如圖3,過點A、P的直線與y軸于點N,過點P作PM⊥CD,垂足為M,直線MN與x軸交于點Q,試判斷四邊形ADMQ的形狀,并說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
抓住兩個特殊位置:當BC與x軸平行時,求出D的坐標;C與原點重合時,D在y軸上,求出此時D的坐標,設所求直線解析式為y=kx+b,將兩位置D坐標代入得到關于k與b的方程組,求出方程組的解得到k與b的值,即可確定出所求直線解析式.【詳解】當BC與x軸平行時,過B作BE⊥x軸,過D作DF⊥x軸,交BC于點G,如圖1所示.∵等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐標為(﹣1,3);當C與原點O重合時,D在y軸上,此時OD=BE=1,即D(0,1),設所求直線解析式為y=kx+b(k≠0),將兩點坐標代入得:,解得:.則這條直線解析式為y=﹣x+1.故選D.本題屬于一次函數綜合題,涉及的知識有:待定系數法確定一次函數解析式,等腰直角三角形的性質,坐標與圖形性質,熟練運用待定系數法是解答本題的關鍵.2、C【解析】
根據俯視圖的概念可知,只需找到從上面看所得到的圖形即可.【詳解】解:從上面看易得:有2列小正方形,第1列有2個正方形,第2列有2個正方形,故選C.考查下三視圖的概念;主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看所得到的圖形;3、B【解析】
解:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圓周角定理得∠BAF=∠BOF=15°故選:B4、B【解析】
連接DF,根據垂徑定理得到,得到∠DCF=∠EOD=30°,根據圓周角定理、余弦的定義計算即可.【詳解】解:連接DF,∵直徑CD過弦EF的中點G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直徑,
∴∠CFD=90°,
∴CF=CD?cos∠DCF=12×=,故選B.本題考查的是垂徑定理的推論、解直角三角形,掌握平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧是解題的關鍵.5、B【解析】
先由運算的定義,寫出3△5=25,4△7=28,得到關于a、b、c的方程組,用含c的代數式表示出a、b.代入2△2求出值.【詳解】由規定的運算,3△5=3a+5b+c=25,4a+7b+c=28所以3a+5b+c=解這個方程組,得a所以2△2=a+b+c=-35-2c+24+c+c=-2.故選B.本題考查了新運算、三元一次方程組的解法.解決本題的關鍵是根據新運算的意義,正確的寫出3△5=25,4△7=28,2△2.6、B【解析】
根據完全平方公式對A進行判斷;根據冪的乘方與積的乘方對B、C進行判斷;根據合并同類項對D進行判斷.【詳解】A.,故錯誤.B.,正確.C.,故錯誤.D.,故錯誤.故選B.考查完全平方公式,合并同類項,冪的乘方與積的乘方,熟練掌握它們的運算法則是解題的關鍵.7、A【解析】
根據一元二次方程根與系數的關系和整體代入思想即可得解.【詳解】∵x1,x2是關于x的方程x2+bx﹣3=0的兩根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故選A.本題主要考查一元二次方程的根與系數的關系(韋達定理),韋達定理:若一元二次方程ax2+bx+c=0(a≠0)有兩個實數根x1,x2,那么x1+x2=-ba,x1x2=8、C【解析】
根據正方形的每一個角都是直角可得∠BCD=90°,再根據旋轉的性質求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根據等腰直角三角形的性質解答.【詳解】∵四邊形ABCD是正方形,∴∠BCD=90°,∵△BEC繞點C旋轉至△DFC的位置,∴∠ECF=∠BCD=90°,CE=CF,∴△CEF是等腰直角三角形,∴∠EFC=45°.故選:C.本題目是一道考查旋轉的性質問題——每對對應點到旋轉中心的連線的夾角都等于旋轉角度,每對對應邊相等,故為等腰直角三角形.9、A【解析】
根據事件發生的可能性大小判斷相應事件的類型即可.【詳解】解:A、是隨機事件,故A符合題意;B、是不可能事件,故B不符合題意;C、是不可能事件,故C不符合題意;D、是必然事件,故D不符合題意;故選A.本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件,不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.10、C【解析】
根據全等三角形的判定與性質,可得∠ACB=∠DBE的關系,根據三角形外角的性質,可得答案.【詳解】在△ABC和△DEB中,,所以△ABC△BDE(SSS),所以∠ACB=∠DBE.故本題正確答案為C..本題主要考查全等三角形的判定與性質,熟悉掌握是關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、②③④【解析】試題解析:根據已知條件不能推出OA=OD,∴①錯誤;∵AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD平分∠BAC,∴AD⊥EF,∴②正確;∵∠BAC=90°,∠AED=∠AFD=90°,∴四邊形AEDF是矩形,∵AE=AF,∴四邊形AEDF是正方形,∴③正確;∵AE=AF,DE=DF,∴AE2+DF2=AF2+DE2,∴④正確;∴②③④正確,12、1.【解析】
先根據相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性質解答即可.【詳解】∵∴又∵∠A=∠A,∴△ABC∽△AED,∴∵BC=30,∴DE=1,故答案為1.考查相似三角形的判定與性質,掌握相似三角形的判定定理是解題的關鍵.13、①②③④⑤⑥⑦.【解析】
將△ABM繞點A逆時針旋轉,使AB與AD重合,得到△ADH.證明△MAN≌△HAN,得到MN=NH,根據三角形周長公式計算判斷①;判斷出BM=DN時,MN最小,即可判斷出⑧;根據全等三角形的性質判斷②④;將△ADF繞點A順時針性質90°得到△ABH,連接HE.證明△EAH≌△EAF,得到∠HBE=90°,根據勾股定理計算判斷③;根據等腰直角三角形的判定定理判斷⑤;根據等腰直角三角形的性質、三角形的面積公式計算,判斷⑥,根據點A到MN的距離等于正方形ABCD的邊長、三角形的面積公式計算,判斷⑦.【詳解】將△ABM繞點A逆時針旋轉,使AB與AD重合,得到△ADH.則∠DAH=∠BAM,∵四邊形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正確;∵BM+DN≥1,(當且僅當BM=DN時,取等號)∴BM=DN時,MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一點G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,當點M和點B重合時,點N和點C重合,此時,MN最大=AB,即:,∴≤≤1,⑧錯誤;∵MN=NH=BM+DN∴△CMN的周長=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周長等于正方形ABCD的邊長的兩倍,②結論正確;∵△MAN≌△HAN,∴點A到MN的距離等于正方形ABCD的邊長AD,④結論正確;如圖1,將△ADF繞點A順時針性質90°得到△ABH,連接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③結論正確;∵四邊形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四點共圓,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤結論正確;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如圖3,過點M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN?MP=AM?AN?sin45°,S△AEF=AE?AF?sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正確;∵點A到MN的距離等于正方形ABCD的邊長,∴S正方形ABCD:S△AMN==1AB:MN,⑦結論正確.即:正確的有①②③④⑤⑥⑦,故答案為①②③④⑤⑥⑦.此題是四邊形綜合題,主要考查了正方形的性質,全等三角形的判定和性質,等腰直角三角形的判定和性質,解本題的關鍵是構造全等三角形.14、【解析】
∵在矩形ABCD中,AB=,∠DAC=60°,∴DC=,AD=1.由旋轉的性質可知:D′C′=,AD′=1,∴tan∠D′AC′==,∴∠D′AC′=60°.∴∠BAB′=30°,∴S△AB′C′=×1×=,S扇形BAB′==.S陰影=S△AB′C′-S扇形BAB′=-.故答案為-.錯因分析
中檔題.失分原因有2點:(1)不能準確地將陰影部分面積轉化為易求特殊圖形的面積;(2)不能根據矩形的邊求出α的值.15、【解析】
首先由折疊的性質與矩形的性質,證得是等腰三角形,則在中,利用勾股定理,借助于方程即可求得AN的長,又由≌,易得:,由三角函數的性質即可求得MF的長,又由中位線的性質求得EM的長,則問題得解【詳解】如圖,設與AD交于N,EF與AD交于M,根據折疊的性質可得:,,,四邊形ABCD是矩形,,,,,,,設,則,在中,,,,即,,,,≌,,,,,,由折疊的性質可得:,,,,,故答案為.本題考查了折疊的性質,全等三角形的判定與性質,三角函數的性質以及勾股定理等知識,綜合性較強,有一定的難度,解題時要注意數形結合思想與方程思想的應用.16、【解析】
一般方法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.根據隨機事件概率大小的求法,找準兩點:①符合條件的情況數目,②全部情況的總數,二者的比值就是其發生的概率的大小.【詳解】∵不透明袋子中裝有7個球,其中有2個紅球、2個綠球和3個黑球,∴從袋子中隨機取出1個球,則它是黑球的概率是:故答案為:.本題主要考查概率的求法與運用,解決本題的關鍵是要熟練掌握概率的定義和求概率的公式.三、解答題(共8題,共72分)17、線段BE的長約等于18.8cm,線段CD的長約等于10.8cm.【解析】試題分析:在Rt△BED中可先求得BE的長,過C作CF⊥AE于點F,則可求得AF的長,從而可求得EF的長,即可求得CD的長.試題解析:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE?tan∠BDE≈18.75(cm),如圖,過C作AE的垂線,垂足為F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四邊形CDEF為矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE-AF≈10.8(cm),答:線段BE的長約等于18.8cm,線段CD的長約等于10.8cm.【點睛】本題考查了解直角三角形的應用,正確地添加輔助線構造直角三角形是解題的關鍵.18、(1)A(﹣8,0),B(0,﹣6);(2);(3)存在.P點坐標為(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)時,使得.【解析】分析:(1)令已知的直線的解析式中x=0,可求出B點坐標,令y=0,可求出A點坐標;(2)根據A、B的坐標易得到M點坐標,若拋物線的頂點C在⊙M上,那么C點必為拋物線對稱軸與⊙O的交點;根據A、B的坐標可求出AB的長,進而可得到⊙M的半徑及C點的坐標,再用待定系數法求解即可;(3)在(2)中已經求得了C點坐標,即可得到AC、BC的長;由圓周角定理:∠ACB=90°,所以此題可根據兩直角三角形的對應直角邊的不同來求出不同的P點坐標.本題解析:(1)對于直線,當時,;當時,所以A(﹣8,0),B(0,﹣6);(2)在Rt△AOB中,AB==10,∵∠AOB=90°,∴AB為⊙M的直徑,∴點M為AB的中點,M(﹣4,﹣3),∵MC∥y軸,MC=5,∴C(﹣4,2),設拋物線的解析式為y=a(x+4)2+2,把B(0,﹣6)代入得16a+2=﹣6,解得a=,∴拋物線的解析式為,即;(3)存在.當y=0時,,解得x,=﹣2,x,=﹣6,∴D(﹣6,0),E(﹣2,0),,設P(t,-6),∵∴=20,即||=1,當=-1,解得,,此時P點坐標為(﹣4+,-1)或(﹣4﹣,-1);當時,解得=﹣4+,=﹣4﹣;此時P點坐標為(﹣4+,1)或(﹣4﹣,1).綜上所述,P點坐標為(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)時,使得.點睛:本題考查了二次函數的綜合應用及頂點式求二次函數的解析式和一元二次方程的解法,本題的綜合性較強,注意分類討論的思想應用.19、(1)4%;(2)72°;(3)380人【解析】
(1)根據A級人數及百分數計算九年級(1)班學生人數,用總人數減A、B、D級人數,得C級人數,再用C級人數÷總人數×360°,得C等級所在的扇形圓心角的度數;(2)將人數按級排列,可得該班學生體育測試成績的中位數;(3)用(A級百分數+B級百分數)×1900,得這次考試中獲得A級和B級的九年級學生共有的人數;(4)根據各等級人數多少,設計合格的等級,使大多數人能合格.【詳解】解:(1)九年級(1)班學生人數為13÷26%=50人,C級人數為50-13-25-2=10人,C等級所在的扇形圓心角的度數為10÷50×360°=72°,故答案為72°;(2)共50人,其中A級人數13人,B級人數25人,故該班學生體育測試成績的中位數落在B等級內,故答案為B;(3)估計這次考試中獲得A級和B級的九年級學生共有(26%+25÷50)×1900=1444人;(4)建議:把到達A級和B級的學生定為合格,(答案不唯一).20、CE的長為(4+)米【解析】
由題意可先過點A作AH⊥CD于H.在Rt△ACH中,可求出CH,進而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的長.【詳解】過點A作AH⊥CD,垂足為H,由題意可知四邊形ABDH為矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH?tan∠CAH,∴CH=AH?tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉線CE的長為(4+)米.考點:解直角三角形的應用-仰角俯角問題21、(1)y=﹣310x2+1110x+2;(2)y=2x+2;(3)①線段BP與線段AE的關系是相互垂直;②點P的坐標為:(﹣4+23,﹣8+43)或(﹣4﹣23,﹣8﹣43)或(0,﹣4)或(﹣【解析】
(1)將A(5,0)和點B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;(2)C點坐標為(0,2),把點B、C的坐標代入直線方程y=kx+b即可求解;(3)①AE直線的斜率kAE=2,而直線BC斜率的kAE=2即可求解;②考慮當P點在線段BC上時和在線段BE上時兩種情況,利用PM′=PM即可求解.【詳解】(1)將A(5,0)和點B(﹣3,﹣4)代入y=ax2+bx+2,解得:a=﹣,b=,故函數的表達式為y=﹣x2+x+2;(2)C點坐標為(0,2),把點B、C的坐標代入直線方程y=kx+b,解得:k=2,b=2,故:直線BC的函數表達式為y=2x+2,(3)①E是點B關于y軸的對稱點,E坐標為(3,﹣4),則AE直線的斜率kAE=2,而直線BC斜率的kAE=2,∴AE∥BC,而EP⊥BC,∴BP⊥AE而BP=AE,∴線段BP與線段AE的關系是相互垂直;②設點P的橫坐標為m,當P點在線段BC上時,P坐標為(m,2m+2),M坐標為(m,2),則PM=2m,直線MM′⊥BC,∴kMM′=﹣,直線MM′的方程為:y=﹣x+(2+m),則M′坐標為(0,2+m)或(4+m,0),由題意得:PM′=PM=2m,PM′2=42+m2=(2m)2,此式不成立,或PM′2=m2+(2m+2)2=(2m)2,解得:m=﹣4±2,故點P的坐標為(﹣4±2,﹣8±4);當P點在線段BE上時,點P坐標為(m,﹣4),點M坐標為(m,2),則PM=6,直線MM′的方程不變,為y=﹣x+(2+m),則M′坐標為(0,2+m)或(4+m,0),PM′2=m2+(6+m)2=(2m)2,解得:m=0,或﹣;或PM′2=42+42=(6)2,無解;故點P的坐標為(0,﹣4)或(﹣,﹣4);綜上所述:點P的坐標為:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).主要考查了二次函數的解析式的求法和與幾何圖形結合的綜合能力的培養.要會利用數形結合的思想把代數和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.22、(1)一個A品牌的足球需90元,則一個B品牌的足球需100元;(2)1.【解析】
(1)設一個A品牌的足球需x元,則一個B品牌的足球需y元,根據“購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元”列出方程組并解答;(2)把(1)中的數據代入求值即可.【詳解】(1)設一個A品牌的足球需x元,則一個B品牌的足球需y元,依題意得:,解得:.答:一個A品牌的足球需40元,則一個B品牌的足球需100元;(2)依題意得:20×40+2×100=1(元).答:該校購買20個A品牌的足球和2個B品牌的足球的總費用是1元.考點:二元一次方程組的應用.23、3【解析】
先算負整數指數冪、零指數冪、二次根式的化簡、絕對值,再相加即可求解;【詳解】解:原式=23=23=考查實數的混合運算,分別掌握負整數指數冪、零指數冪、二次根式的化簡、絕對值的計算法則是解題的關鍵.24、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四邊形ADMQ是平行四邊形;理由見解析.【解析】
(1)由點A、B坐標利用待定系數法求解可得拋物線解析式為y=x2-3x+1,作BG⊥CA,交CA的延長線于點G,證△GAB∽△OAC得=,據此知BG=2AG.在Rt△ABG中根據BG2+AG2=AB2,可求得AG=.繼而可得BG=,CG=AC+AG=,根據正切函數定義可得答案;(2)作BH⊥CD于點H,交CP于點K,連接AK,易得四邊形OBHC是正方形,應用“全角夾半角”可得AK=OA+HK,設K(1,h),則BK=h,HK=HB-KB=1-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 眉山職業技術學院《外國語語音與歌唱》2023-2024學年第二學期期末試卷
- 寧波諾丁漢大學《巖溶學》2023-2024學年第二學期期末試卷
- 南京傳媒學院《大學外語(一)》2023-2024學年第一學期期末試卷
- 四川省涼山州西昌市2025年初三月考試題(二)語文試題試卷含解析
- 內江市隆昌縣2024-2025學年數學三下期末質量跟蹤監視試題含解析
- 上海電機學院《數字游戲合成》2023-2024學年第二學期期末試卷
- 山西省(朔州地區)市級名校2024-2025學年初三4月期中練習(二模)(理、文合卷)數學試題含解析
- 山東省棗莊市部分重點高中2025年高三七校聯考歷史試題試卷含解析
- 南京科技職業學院《大學英語I(藝體類)》2023-2024學年第一學期期末試卷
- 江蘇衛生健康職業學院《構筑物與公共藝術》2023-2024學年第二學期期末試卷
- 醫療廢物與醫療污水處理
- 中華人民共和國能源法
- 鋼結構隔層施工合同范本
- 季度工作總結報告模板
- 跟骨骨折護理查房課件
- 《資本論》(德)卡爾·馬克思-文字版
- 多模態交互反饋機制
- 部編版小學道德與法治三年級下冊第8課《大家的“朋友”》課件
- 中華文明史(山東聯盟)智慧樹知到答案2024年青島理工大學
- NBT 33018-2015 電動汽車充換電設施供電系統技術規范
- DL∕T 523-2017 化學清洗緩蝕劑應用性能評價指標及試驗方法
評論
0/150
提交評論