




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省泰州市興化市顧莊區2025年初三下學期五校協作體期初考試數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列各組數中,互為相反數的是()A.﹣2與2 B.2與2 C.3與 D.3與32.若函數的圖象在其象限內y的值隨x值的增大而增大,則m的取值范圍是()A.m>﹣2 B.m<﹣2C.m>2 D.m<23.如圖,在網格中,小正方形的邊長均為1,點A,B,C都在格點上,則∠ABC的正切值是()A. B.2 C. D.4.已知⊙O的半徑為5,若OP=6,則點P與⊙O的位置關系是()A.點P在⊙O內 B.點P在⊙O外 C.點P在⊙O上 D.無法判斷5.如圖,在平行四邊形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④ B.②和③ C.③和④ D.②和④6.如圖是由若干個大小相同的小正方體堆砌而成的幾何體,那么其三種視圖中面積最小的是()A.主視圖 B.俯視圖 C.左視圖 D.一樣大7.如下圖所示,該幾何體的俯視圖是()A. B. C. D.8.如圖,一個斜邊長為10cm的紅色三角形紙片,一個斜邊長為6cm的藍色三角形紙片,一張黃色的正方形紙片,拼成一個直角三角形,則紅、藍兩張紙片的面積之和是()A.60cm2 B.50cm2 C.40cm2 D.30cm29.已知關于x的不等式ax<b的解為x>-2,則下列關于x的不等式中,解為x<2的是()A.ax+2<-b+2 B.–ax-1<b-1 C.ax>b D.10.若關于的一元二次方程有兩個不相等的實數根,則一次函數的圖象可能是:A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,一個直角三角形紙片,剪去直角后,得到一個四邊形,則∠1+∠2=_______度.12.關于x的一元二次方程x2+4x﹣k=0有實數根,則k的取值范圍是__________.13.如圖,已知矩形ABCD中,點E是BC邊上的點,BE=2,EC=1,AE=BC,DF⊥AE,垂足為F.則下列結論:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC;④sin∠CDF=.其中正確的結論是_____.(把正確結論的序號都填上)14.如圖,某數學興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.15.在一個暗箱里放有a個除顏色外其他完全相同的球,這a個球中紅球只有3個.每次將球攪拌均勻后,任意摸出一個球記下顏色再放回暗箱.通過大量重復摸球試驗后發現,摸到紅球的頻率穩定在0.25,那么可以推算出a大約是_________.16.分式方程+=1的解為________.17.如圖,在矩形ABCD中,對角線BD的長為1,點P是線段BD上的一點,聯結CP,將△BCP沿著直線CP翻折,若點B落在邊AD上的點E處,且EP//AB,則AB的長等于________.三、解答題(共7小題,滿分69分)18.(10分)“端午節”是我國的傳統佳節,民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節前對某居民區市民進行了抽樣調查,并將調查情況繪制成如下兩幅統計圖(尚不完整).請根據以上信息回答:(1)本次參加抽樣調查的居民有多少人?(2)將兩幅不完整的圖補充完整;(3)若居民區有8000人,請估計愛吃D粽的人數;(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.19.(5分)廬陽春風體育運動品商店從廠家購進甲,乙兩種T恤共400件,其每件的售價與進貨量(件)之間的關系及成本如下表所示:T恤每件的售價/元每件的成本/元甲50乙60(1)當甲種T恤進貨250件時,求兩種T恤全部售完的利潤是多少元;若所有的T恤都能售完,求該商店獲得的總利潤(元)與乙種T恤的進貨量(件)之間的函數關系式;在(2)的條件下,已知兩種T恤進貨量都不低于100件,且所進的T恤全部售完,該商店如何安排進貨才能使獲得的利潤最大?20.(8分)已知關于x的一元二次方程.求證:方程有兩個不相等的實數根;如果方程的兩實根為,,且,求m的值.21.(10分)已知,拋物線(為常數).(1)拋物線的頂點坐標為(,)(用含的代數式表示);(2)若拋物線經過點且與圖象交點的縱坐標為3,請在圖1中畫出拋物線的簡圖,并求的函數表達式;(3)如圖2,規矩的四條邊分別平行于坐標軸,,若拋物線經過兩點,且矩形在其對稱軸的左側,則對角線的最小值是.22.(10分)如圖,在△ABC中,BC=6,AB=AC,E,F分別為AB,AC上的點(E,F不與A重合),且EF∥BC.將△AEF沿著直線EF向下翻折,得到△A′EF,再展開.(1)請判斷四邊形AEA′F的形狀,并說明理由;(2)當四邊形AEA′F是正方形,且面積是△ABC的一半時,求AE的長.23.(12分)某高中學校為高一新生設計的學生板凳的正面視圖如圖所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距離分別為40cm、8cm.為使板凳兩腿底端A、D之間的距離為50cm,那么橫梁EF應為多長?(材質及其厚度等暫忽略不計).24.(14分)解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據只有符號不同的兩數互為相反數,可直接判斷.【詳解】-2與2互為相反數,故正確;2與2相等,符號相同,故不是相反數;3與互為倒數,故不正確;3與3相同,故不是相反數.故選:A.此題主要考查了相反數,關鍵是觀察特點是否只有符號不同,比較簡單.2、B【解析】
根據反比例函數的性質,可得m+1<0,從而得出m的取值范圍.【詳解】∵函數的圖象在其象限內y的值隨x值的增大而增大,∴m+1<0,解得m<-1.故選B.3、A【解析】分析:連接AC,根據勾股定理求出AC、BC、AB的長,根據勾股定理的逆定理得到△ABC是直角三角形,根據正切的定義計算即可.詳解:連接AC,
由網格特點和勾股定理可知,
AC=,AC2+AB2=10,BC2=10,
∴AC2+AB2=BC2,
∴△ABC是直角三角形,
∴tan∠ABC=.點睛:考查的是銳角三角函數的定義、勾股定理及其逆定理的應用,熟記銳角三角函數的定義、掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形是解題的關鍵.4、B【解析】
比較OP與半徑的大小即可判斷.【詳解】,,,點P在外,故選B.本題考查點與圓的位置關系,記住:點與圓的位置關系有3種設的半徑為r,點P到圓心的距離,則有:點P在圓外;點P在圓上;點P在圓內.5、D【解析】∵四邊形ABCD是平行四邊形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②與④不一定成立,∵當四邊形是菱形時,②和④成立.故選D.6、C【解析】如圖,該幾何體主視圖是由5個小正方形組成,左視圖是由3個小正方形組成,俯視圖是由5個小正方形組成,故三種視圖面積最小的是左視圖,故選C.7、B【解析】
根據俯視圖是從上面看到的圖形解答即可.【詳解】從上面看是三個長方形,故B是該幾何體的俯視圖.故選B.本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.8、D【解析】
標注字母,根據兩直線平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根據相似三角形對應邊成比例求出,即,設BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根據紅、藍兩張紙片的面積之和等于大三角形的面積減去正方形的面積計算即可得解.【詳解】解:如圖,∵正方形的邊DE∥CF,∴∠B=∠AED,∵∠ADE=∠EFB=90°,∴△ADE∽△EFB,∴,∴,設BF=3a,則EF=5a,∴BC=3a+5a=8a,AC=8a×=a,在Rt△ABC中,AC1+BC1=AB1,即(a)1+(8a)1=(10+6)1,解得a1=,紅、藍兩張紙片的面積之和=×a×8a-(5a)1,=a1-15a1,=a1,=×,=30cm1.故選D.本題考查根據相似三角形的性質求出直角三角形的兩直角邊,利用紅、藍兩張紙片的面積之和等于大三角形的面積減去正方形的面積求解是關鍵.9、B【解析】∵關于x的不等式ax<b的解為x>-2,∴a<0,且,即,∴(1)解不等式ax+2<-b+2可得:ax<-b,,即x>2;(2)解不等式–ax-1<b-1可得:-ax<b,,即x<2;(3)解不等式ax>b可得:,即x<-2;(4)解不等式可得:,即;∴解集為x<2的是B選項中的不等式.故選B.10、B【解析】
由方程有兩個不相等的實數根,可得,解得,即異號,當時,一次函數的圖象過一三四象限,當時,一次函數的圖象過一二四象限,故答案選B.二、填空題(共7小題,每小題3分,滿分21分)11、270【解析】
根據三角形的內角和與平角定義可求解.【詳解】解析:如圖,根據題意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案為:270度.本題主要考查了三角形的內角和定理和內角與外角之間的關系.要會熟練運用內角和定理求角的度數.12、k≥﹣1【解析】分析:根據方程的系數結合根的判別式△≥0,即可得出關于k的一元一次不等式,解之即可得出結論.詳解:∵關于x的一元二次方程x2+1x-k=0有實數根,∴△=12-1×1×(-k)=16+1k≥0,解得:k≥-1.故答案為k≥-1.點睛:本題考查了根的判別式,牢記“當△≥0時,方程有實數根”是解題的關鍵.13、①②【解析】
只要證明△EAB≌△ADF,∠CDF=∠AEB,利用勾股定理求出AB即可解決問題.【詳解】∵四邊形ABCD是矩形,∴AD=BC,AD∥BC,∠B=90°,∵BE=2,EC=1,∴AE=AD=BC=3,AB==,∵AD∥BC,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△EAB≌△ADF,∴AF=BE=2,DF=AB=,故①②正確,不妨設DF平分∠ADC,則△ADF是等腰直角三角形,這個顯然不可能,故③錯誤,∵∠DAF+∠ADF=90°,∠CDF+∠ADF=90°,∴∠DAF=∠CDF,∴∠CDF=∠AEB,∴sin∠CDF=sin∠AEB=,故④錯誤,故答案為①②.本題考查矩形的性質、全等三角形的判定和性質、解直角三角形、勾股定理、銳角三角函數等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.14、(50﹣).【解析】
過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得MN=AB.【詳解】解:如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N,則AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN===(m),∴MN=CM?CN=50?(m).則AB=MN=(50?)m.故答案是:(50?).本題考查了解直角三角形的應用.解決此問題的關鍵在于正確理解題意的基礎上建立數學模型,把實際問題轉化為數學問題.15、12【解析】
在同樣條件下,大量反復試驗時,隨機事件發生的頻率逐漸穩定在概率附近,可以從比例關系入手,根據紅球的個數除以總數等于頻率,求解即可.【詳解】∵摸到紅球的頻率穩定在0.25,
∴解得:a=12故答案為:12此題主要考查了利用頻率估計概率,解答此題的關鍵是利用紅球的個數除以總數等于頻率.16、【解析】
根據解分式方程的步驟,即可解答.【詳解】方程兩邊都乘以,得:,解得:,檢驗:當時,,所以分式方程的解為,故答案為.考查了解分式方程,解分式方程的基本思想是“轉化思想”,把分式方程轉化為整式方程求解解分式方程一定注意要驗根.17、【解析】
設CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,進而得出PE=a2,再根據△DEP∽△DAB,即可得到,即,可得,即可得到AB的長等于.【詳解】如圖,設CD=AB=a,則BC2=BD2-CD2=1-a2,
由折疊可得,CE=BC,BP=EP,
∴CE2=1-a2,
∴Rt△CDE中,DE2=CE2-CD2=1-2a2,
∵PE∥AB,∠A=90°,
∴∠PED=90°,
∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,
∴PE=a2,
∵PE∥AB,
∴△DEP∽△DAB,
∴,即,
∴,
即a2+a-1=0,
解得(舍去),
∴AB的長等于AB=.故答案為.三、解答題(共7小題,滿分69分)18、(1)600(2)見解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次參加抽樣調查的居民有600人.(2分)(2)如圖;…(5分)(3)8000×40%=3200(人).答:該居民區有8000人,估計愛吃D粽的人有3200人.…(7分)(4)如圖;(列表方法略,參照給分).…(8分)P(C粽)==.答:他第二個吃到的恰好是C粽的概率是.…(10分)19、(1)10750;(2);(3)最大利潤為10750元.【解析】
(1)根據“利潤=銷售總額-總成本”結合兩種T恤的銷售數量代入相關代數式進行求解即可;(2)根據題意,分兩種情況進行討論:①0<m<200;②200≤m≤400時,根據“利潤=銷售總額-總成本”即可求得各相關函數關系式;(3)求出(2)中各函數最大值,進行比較即可得到結論.【詳解】(1)∵甲種T恤進貨250件∴乙種T恤進貨量為:400-250=150件故由題意得,;(2)①②;故.(3)由題意,,①,,②,綜上,最大利潤為10750元.本題考查了二次函數的應用,找出題中的等量關系以及根據題意確定二次函數的解析式是解題的關鍵.20、(1)證明見解析(1)1或1【解析】試題分析:(1)要證明方程有兩個不相等的實數根,只要證明原來的一元二次方程的△的值大于0即可;(1)根據根與系數的關系可以得到關于m的方程,從而可以求得m的值.試題解析:(1)證明:∵,∴△=[﹣(m﹣3)]1﹣4×1×(﹣m)=m1﹣1m+9=(m﹣1)1+8>0,∴方程有兩個不相等的實數根;(1)∵,方程的兩實根為,,且,∴,,∴,∴(m﹣3)1﹣3×(﹣m)=7,解得,m1=1,m1=1,即m的值是1或1.21、(1);(2)圖象見解析,或;(3)【解析】
(1)將拋物線的解析式配成頂點式,即可得出頂點坐標;(2)根據拋物線經過點M,用待定系數法求出拋物線的解析式,即可得出圖象,然后將縱坐標3代入拋物線的解析式中,求出橫坐標,然后將點再代入反比例函數的表達式中即可求出反比例函數的表示式;(3)設出A的坐標,表示出C,D的坐標,得到CD的長度,根據題意找到CD的最小值,因為AD的長度不變,所以當CD最小時,對角線AC最小,則答案可求.【詳解】解:(1),拋物線的頂點的坐標為.故答案為:(2)將代入拋物線的解析式得:解得:,拋物線的解析式為.拋物線的大致圖象如圖所示:將代入得:,解得:或拋物線與反比例函數圖象的交點坐標為或.將代入得:,.將代入得:,.綜上所述,反比例函數的表達式為或.(3)設點的坐標為,則點的坐標為,的坐標為.的長隨的增大而減小.矩形在其對稱軸的左側,拋物線的對稱軸為,當時,的長有最小值,的最小值.的長度不變,當最小時,有最小值.的最小值故答案為:.本題主要考查二次函數,反比例函數與幾何綜合,掌握二次函數,反比例函數的圖象與性質是解題的關鍵.22、(1)四邊形AEA′F為菱形.理由見解析;(2)1.【解析】
(1)先證明AE=AF,再根據折疊的性質得AE=A′E,AF=A′F,然后根據菱形的判定方法可判斷四邊形AEA′F為菱形;(2)四先利用四邊形AEA′F是正方形得到∠A=90°,則AB=AC=BC=6,然后利用正方形AEA′F的面積是△ABC的一半得到AE2=??6?6,然后利用算術平方根的定義求AE即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工程裝修施工合同書范例二零二五年
- 紡織機械操作證書考試準備技巧的試題及答案
- 焊接設備的維護與保養知識試題及答案
- 2025中考作文考點素材:常考主題范文8篇
- 昆山房屋租賃合同二零二五年
- 二零二五建筑工程工人勞務合同
- 電氣工程師資格證書考試經常考到的試題及答案
- 2024年針對機械工程行業的政策解析試題及答案
- 酒店客戶流失原因探討試題及答案
- 2024年質量工程師的綜合素質提升路徑試題及答案
- 專業工程分包業主審批表
- 藥劑科終止妊娠藥品管理制度
- 除草劑分類和使用方法
- 合同制消防員績效考核細則詳解
- 中遠集團養老保險工作管理程序
- 留守兒童幫扶記錄表
- 變電站第二種工作票
- 煤礦機電運輸專業質量標準化管理制度
- 機電一體化專業畢業論文43973
- 基于PLC的變頻中央空調溫度控制系統的畢業設計
- 第三部分110kv模塊第34章1b1y1
評論
0/150
提交評論