2025年山東省寧陽縣初三第五次模擬考數(shù)學試題試卷含解析_第1頁
2025年山東省寧陽縣初三第五次模擬考數(shù)學試題試卷含解析_第2頁
2025年山東省寧陽縣初三第五次模擬考數(shù)學試題試卷含解析_第3頁
2025年山東省寧陽縣初三第五次模擬考數(shù)學試題試卷含解析_第4頁
2025年山東省寧陽縣初三第五次模擬考數(shù)學試題試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025年山東省寧陽縣初三第五次模擬考數(shù)學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列命題中真命題是()A.若a2=b2,則a=bB.4的平方根是±2C.兩個銳角之和一定是鈍角D.相等的兩個角是對頂角2.一、單選題如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1253.△ABC在網(wǎng)絡中的位置如圖所示,則cos∠ACB的值為()A. B. C. D.4.十九大報告指出,我國目前經(jīng)濟保持了中高速增長,在世界主要國家中名列前茅,國內生產(chǎn)總值從54萬億元增長80萬億元,穩(wěn)居世界第二,其中80萬億用科學記數(shù)法表示為()A.8×1012 B.8×1013 C.8×1014 D.0.8×10135.由一些大小相同的小正方形搭成的幾何體的左視圖和俯視圖,如圖所示,則搭成該幾何體的小正方形的個數(shù)最少是()A.4 B.5 C.6 D.76.把多項式ax3﹣2ax2+ax分解因式,結果正確的是()A.a(chǎn)x(x2﹣2x) B.a(chǎn)x2(x﹣2)C.a(chǎn)x(x+1)(x﹣1) D.a(chǎn)x(x﹣1)27.為了解某小區(qū)小孩暑期的學習情況,王老師隨機調查了該小區(qū)8個小孩某天的學習時間,結果如下(單位:小時):1.5,1.5,3,4,2,5,2.5,4.5,關于這組數(shù)據(jù),下列結論錯誤的是()A.極差是3.5 B.眾數(shù)是1.5 C.中位數(shù)是3 D.平均數(shù)是38.若代數(shù)式在實數(shù)范圍內有意義,則x的取值范圍是()A. B. C. D.9.如圖,⊙O中,弦BC與半徑OA相交于點D,連接AB,OC,若∠A=60°,∠ADC=85°,則∠C的度數(shù)是()A.25° B.27.5° C.30° D.35°10.如圖所示,△ABC為等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG邊長也為2,且AC與DE在同一直線上,△ABC從C點與D點重合開始,沿直線DE向右平移,直到點A與點E重合為止,設CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關系的圖象大致是()A. B.C. D.11.下列計算正確的是()A.2a2﹣a2=1 B.(ab)2=ab2 C.a(chǎn)2+a3=a5 D.(a2)3=a612.下列實數(shù)中,為無理數(shù)的是()A. B. C.﹣5 D.0.3156二、填空題:(本大題共6個小題,每小題4分,共24分.)13.二次根式在實數(shù)范圍內有意義,x的取值范圍是_____.14.已知正比例函數(shù)的圖像經(jīng)過點M(-2,1)、Ax1,y1、Bx2,y15.已知整數(shù)k<5,若△ABC的邊長均滿足關于x的方程,則△ABC的周長是.16.在10個外觀相同的產(chǎn)品中,有2個不合格產(chǎn)品,現(xiàn)從中任意抽取1個進行檢測,抽到合格產(chǎn)品的概率是.17.分解因式:________.18.觀察下列的“蜂窩圖”按照它呈現(xiàn)的規(guī)律第n個圖案中的“”的個數(shù)是_____(用含n的代數(shù)式表示)三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,Rt△ABC,CA⊥BC,AC=4,在AB邊上取一點D,使AD=BC,作AD的垂直平分線,交AC邊于點F,交以AB為直徑的⊙O于G,H,設BC=x.(1)求證:四邊形AGDH為菱形;(2)若EF=y(tǒng),求y關于x的函數(shù)關系式;(3)連結OF,CG.①若△AOF為等腰三角形,求⊙O的面積;②若BC=3,則CG+9=______.(直接寫出答案).20.(6分)一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2)、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.從中任意摸出1個球,恰好摸到紅球的概率是;先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.21.(6分)如圖1在正方形ABCD的外側作兩個等邊三角形ADE和DCF,連接AF,BE.請判斷:AF與BE的數(shù)量關系是,位置關系;如圖2,若將條件“兩個等邊三角形ADE和DCF”變?yōu)椤皟蓚€等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結論是否仍然成立?請作出判斷并給予證明;若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結論都能成立嗎?請直接寫出你的判斷.22.(8分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象交于點A(4,3),與y軸的負半軸交于點B,連接OA,且OA=OB.(1)求一次函數(shù)和反比例函數(shù)的表達式;(2)過點P(k,0)作平行于y軸的直線,交一次函數(shù)y=2x+n于點M,交反比例函數(shù)的圖象于點N,若NM=NP,求n的值.23.(8分)某網(wǎng)店銷售某款童裝,每件售價60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價銷售.市場調查反映:每降價1元,每星期可多賣30件.已知該款童裝每件成本價40元,設該款童裝每件售價x元,每星期的銷售量為y件.(1)求y與x之間的函數(shù)關系式;(2)當每件售價定為多少元時,每星期的銷售利潤最大,最大利潤是多少元?(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝多少件?24.(10分)如圖,M、N為山兩側的兩個村莊,為了兩村交通方便,根據(jù)國家的惠民政策,政府決定打一直線涵洞.工程人員為了計算工程量,必須計算M、N兩點之間的直線距離,選擇測量點A、B、C,點B、C分別在AM、AN上,現(xiàn)測得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N兩點之間的距離.25.(10分)定義:和三角形一邊和另兩邊的延長線同時相切的圓叫做三角形這邊上的旁切圓.如圖所示,已知:⊙I是△ABC的BC邊上的旁切圓,E、F分別是切點,AD⊥IC于點D.(1)試探究:D、E、F三點是否同在一條直線上?證明你的結論.(2)設AB=AC=5,BC=6,如果△DIE和△AEF的面積之比等于m,,試作出分別以,為兩根且二次項系數(shù)為6的一個一元二次方程.26.(12分)如圖,拋物線y=ax2+bx+c與x軸相交于點A(﹣3,0),B(1,0),與y軸相交于(0,﹣),頂點為P.(1)求拋物線解析式;(2)在拋物線是否存在點E,使△ABP的面積等于△ABE的面積?若存在,求出符合條件的點E的坐標;若不存在,請說明理由;(3)坐標平面內是否存在點F,使得以A、B、P、F為頂點的四邊形為平行四邊形?直接寫出所有符合條件的點F的坐標,并求出平行四邊形的面積.27.(12分)“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)根據(jù)所給信息,解答以下問題:(1)在扇形統(tǒng)計圖中,C對應的扇形的圓心角是度;(2)補全條形統(tǒng)計圖;(3)所抽取學生的足球運球測試成績的中位數(shù)會落在等級;(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

利用對頂角的性質、平方根的性質、銳角和鈍角的定義分別判斷后即可確定正確的選項.【詳解】A、若a2=b2,則a=±b,錯誤,是假命題;B、4的平方根是±2,正確,是真命題;C、兩個銳角的和不一定是鈍角,故錯誤,是假命題;D、相等的兩個角不一定是對頂角,故錯誤,是假命題.故選B.考查了命題與定理的知識,解題的關鍵是了解對頂角的性質、平方根的性質、銳角和鈍角的定義,難度不大.2、B【解析】

根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,

又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,

∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,

∴CM=EM=MF=5,EF=10,

由勾股定理可知CE2+CF2=EF2=1.

故選:B.本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.3、B【解析】作AD⊥BC的延長線于點D,如圖所示:在Rt△ADC中,BD=AD,則AB=BD.cos∠ACB=,故選B.4、B【解析】80萬億用科學記數(shù)法表示為8×1.故選B.點睛:本題考查了科學計數(shù)法,科學記數(shù)法的表示形式為的形式,其中,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).5、C【解析】試題分析:由題中所給出的左視圖知物體共兩層,每一層都是兩個小正方體;從俯視圖可以可以看出最底層的個數(shù)所以圖中的小正方體最少2+4=1.故選C.6、D【解析】

先提取公因式ax,再根據(jù)完全平方公式把x2﹣2x+1繼續(xù)分解即可.【詳解】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故選D.本題考查了因式分解,把一個多項式化成幾個整式的乘積的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分組分解法.因式分解必須分解到每個因式都不能再分解為止.7、C【解析】

由極差、眾數(shù)、中位數(shù)、平均數(shù)的定義對四個選項一一判斷即可.【詳解】A.極差為5﹣1.5=3.5,此選項正確;B.1.5個數(shù)最多,為2個,眾數(shù)是1.5,此選項正確;C.將式子由小到大排列為:1.5,1.5,2,2.5,3,4,4.5,5,中位數(shù)為×(2.5+3)=2.75,此選項錯誤;D.平均數(shù)為:×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此選項正確.故選C.本題主要考查平均數(shù)、眾數(shù)、中位數(shù)、極差的概念,其中在求中位數(shù)的時候一定要將給出的數(shù)據(jù)按從大到小或者從小到大的順序排列起來再進行求解.8、D【解析】試題解析:要使分式有意義,則1-x≠0,解得:x≠1.故選D.9、D【解析】分析:直接利用三角形外角的性質以及鄰補角的關系得出∠B以及∠ODC度數(shù),再利用圓周角定理以及三角形內角和定理得出答案.詳解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故選D.點睛:此題主要考查了圓周角定理以及三角形內角和定理等知識,正確得出∠AOC度數(shù)是解題關鍵.10、A【解析】

此題可分為兩段求解,即C從D點運動到E點和A從D點運動到E點,列出面積隨動點變化的函數(shù)關系式即可.【詳解】解:設CD的長為與正方形DEFG重合部分圖中陰影部分的面積為當C從D點運動到E點時,即時,.當A從D點運動到E點時,即時,,與x之間的函數(shù)關系由函數(shù)關系式可看出A中的函數(shù)圖象與所求的分段函數(shù)對應.故選A.本題考查的動點變化過程中面積的變化關系,重點是列出函數(shù)關系式,但需注意自變量的取值范圍.11、D【解析】

根據(jù)合并同類項法則判斷A、C;根據(jù)積的乘方法則判斷B;根據(jù)冪的乘方法判斷D,由此即可得答案.【詳解】A、2a2﹣a2=a2,故A錯誤;B、(ab)2=a2b2,故B錯誤;C、a2與a3不是同類項,不能合并,故C錯誤;D、(a2)3=a6,故D正確,故選D.本題考查冪的乘方與積的乘方,合并同類項,熟練掌握各運算的運算性質和運算法則是解題的關鍵.12、B【解析】

根據(jù)無理數(shù)的定義解答即可.【詳解】選項A、是分數(shù),是有理數(shù);選項B、是無理數(shù);選項C、﹣5為有理數(shù);選項D、0.3156是有理數(shù);故選B.本題考查了無理數(shù)的判定,熟知無理數(shù)是無限不循環(huán)小數(shù)是解決問題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≤1【解析】

根據(jù)二次根式有意義的條件列出不等式,解不等式即可.【詳解】解:由題意得,1﹣x≥0,解得,x≤1,故答案為x≤1.本題考查的是二次根式有意義的條件,掌握二次根式中的被開方數(shù)必須是非負數(shù)是解題的關鍵.14、>【解析】分析:根據(jù)正比例函數(shù)的圖象經(jīng)過點M(﹣1,1)可以求得該函數(shù)的解析式,然后根據(jù)正比例函數(shù)的性質即可解答本題.詳解:設該正比例函數(shù)的解析式為y=kx,則1=﹣1k,得:k=﹣0.5,∴y=﹣0.5x.∵正比例函數(shù)的圖象經(jīng)過點A(x1,y1)、B(x1,y1),x1<x1,∴y1>y1.故答案為>.點睛:本題考查了正比例函數(shù)圖象上點的坐標特征,解答本題的關鍵是明確題意,利用正比例函數(shù)的性質解答.15、6或12或1.【解析】

根據(jù)題意得k≥0且(3)2﹣4×8≥0,解得k≥.∵整數(shù)k<5,∴k=4.∴方程變形為x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的邊長均滿足關于x的方程x2﹣6x+8=0,∴△ABC的邊長為2、2、2或4、4、4或4、4、2.∴△ABC的周長為6或12或1.考點:一元二次方程根的判別式,因式分解法解一元二次方程,三角形三邊關系,分類思想的應用.【詳解】請在此輸入詳解!16、【解析】

試題分析:根據(jù)概率的意義,用符合條件的數(shù)量除以總數(shù)即可,即.考點:概率17、(a+1)(a-1)【解析】

根據(jù)平方差公式分解即可.【詳解】(a+1)(a-1).故答案為:(a+1)(a-1).本題考查了因式分解,把一個多項式化成幾個整式的乘積的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分組分解法.因式分解必須分解到每個因式都不能再分解為止.18、3n+1【解析】

根據(jù)題意可知:第1個圖有4個圖案,第2個共有7個圖案,第3個共有10個圖案,第4個共有13個圖案,由此可得出規(guī)律.【詳解】解:由題意可知:每1個都比前一個多出了3個“”,∴第n個圖案中共有“”為:4+3(n﹣1)=3n+1故答案為:3n+1.本題考查學生的觀察能力,解題的關鍵是熟練正確找出圖中的規(guī)律,本題屬于基礎題型.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.【解析】

(1)根據(jù)線段的垂直平分線的性質以及垂徑定理證明AG=DG=DH=AH即可;

(2)只要證明△AEF∽△ACB,可得解決問題;

(3)①分三種情形分別求解即可解決問題;

②只要證明△CFG∽△HFA,可得=,求出相應的線段即可解決問題;【詳解】(1)證明:∵GH垂直平分線段AD,∴HA=HD,GA=GD,∵AB是直徑,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四邊形AGDH是菱形.(2)解:∵AB是直徑,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∴,∴y=x2(x>0).(3)①解:如圖1中,連接DF.∵GH垂直平分線段AD,∴FA=FD,∴當點D與O重合時,△AOF是等腰三角形,此時AB=2BC,∠CAB=30°,∴AB=,∴⊙O的面積為π.如圖2中,當AF=AO時,∵AB==,∴OA=,∵AF==,∴=,解得x=4(負根已經(jīng)舍棄),∴AB=,∴⊙O的面積為8π.如圖2﹣1中,當點C與點F重合時,設AE=x,則BC=AD=2x,AB=,∵△ACE∽△ABC,∴AC2=AE?AB,∴16=x?,解得x2=2﹣2(負根已經(jīng)舍棄),∴AB2=16+4x2=8+8,∴⊙O的面積=π??AB2=(2+2)π綜上所述,滿足條件的⊙O的面積為π或8π或(2+2)π;②如圖3中,連接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=,∴AE=,∴OE=OA﹣AE=1,∴EG=EH==,∵EF=x2=,∴FG=﹣,AF==,AH==,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴,∴,∴CG=﹣,∴CG+9=4.故答案為4.本題考查圓綜合題、相似三角形的判定和性質、垂徑定理、線段的垂直平分線的性質、菱形的判定和性質、勾股定理、解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,學會用分類討論的思想思考問題.20、(1)(2)【解析】試題分析:(1)因為總共有4個球,紅球有2個,因此可直接求得紅球的概率;(2)根據(jù)題意,列表表示小球摸出的情況,然后找到共12種可能,而兩次都是紅球的情況有2種,因此可求概率.試題解析:解:(1).(2)用表格列出所有可能的結果:第二次

第一次

紅球1

紅球2

白球

黑球

紅球1

(紅球1,紅球2)

(紅球1,白球)

(紅球1,黑球)

紅球2

(紅球2,紅球1)

(紅球2,白球)

(紅球2,黑球)

白球

(白球,紅球1)

(白球,紅球2)

(白球,黑球)

黑球

(黑球,紅球1)

(黑球,紅球2)

(黑球,白球)

由表格可知,共有12種可能出現(xiàn)的結果,并且它們都是等可能的,其中“兩次都摸到紅球”有2種可能.∴P(兩次都摸到紅球)==.考點:概率統(tǒng)計21、(1)AF=BE,AF⊥BE;(2)證明見解析;(3)結論仍然成立【解析】試題分析:(1)根據(jù)正方形和等邊三角形可證明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,進而通過直角可證得BE⊥AF;(2)類似(1)的證法,證明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此結論還成立;(3)類似(1)(2)證法,先證△AED≌△DFC,然后再證△ABE≌△DAF,因此可得證結論.試題解析:解:(1)AF=BE,AF⊥BE.(2)結論成立.證明:∵四邊形ABCD是正方形,∴BA="AD"=DC,∠BAD=∠ADC=90°.在△EAD和△FDC中,∴△EAD≌△FDC.∴∠EAD=∠FDC.∴∠EAD+∠DAB=∠FDC+∠CDA,即∠BAE=∠ADF.在△BAE和△ADF中,∴△BAE≌△ADF.∴BE=AF,∠ABE=∠DAF.∵∠DAF+∠BAF=90°,∴∠ABE+∠BAF=90°,∴AF⊥BE.(3)結論都能成立.考點:正方形,等邊三角形,三角形全等22、20(1)y=2x-5,y=;(2)n=-4或n=1【解析】

(1)由點A坐標知OA=OB=5,可得點B的坐標,由A點坐標可得反比例函數(shù)解析式,由A、B兩點坐標可得直線AB的解析式;

(2)由k=2知N(2,6),根據(jù)NP=NM得點M坐標為(2,0)或(2,12),分別代入y=2x-n可得答案.【詳解】解:(1)∵點A的坐標為(4,3),

∴OA=5,

∵OA=OB,

∴OB=5,

∵點B在y軸的負半軸上,

∴點B的坐標為(0,-5),

將點A(4,3)代入反比例函數(shù)解析式y(tǒng)=中,

∴反比例函數(shù)解析式為y=,

將點A(4,3)、B(0,-5)代入y=kx+b中,得:k=2、b=-5,

∴一次函數(shù)解析式為y=2x-5;

(2)由(1)知k=2,

則點N的坐標為(2,6),

∵NP=NM,

∴點M坐標為(2,0)或(2,12),

分別代入y=2x-n可得:n=-4或n=1.本題主要考查直線和雙曲線的交點問題,解題的關鍵是熟練掌握待定系數(shù)法求函數(shù)解析式及分類討論思想的運用.23、(1)y=﹣30x+1;(2)每件售價定為55元時,每星期的銷售利潤最大,最大利潤2元;(3)該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝360件.【解析】

(1)每星期的銷售量等于原來的銷售量加上因降價而多銷售的銷售量,代入即可求解函數(shù)關系式;(2)根據(jù)利潤=銷售量(銷售單價-成本),建立二次函數(shù),用配方法求得最大值.(3)根據(jù)題意可列不等式,再取等將其轉化為一元二次方程并求解,根據(jù)每星期的銷售利潤所在拋物線開口向下求出滿足條件的x的取值范圍,再根據(jù)(1)中一元一次方程求得滿足條件的x的取值范圍內y的最小值即可.【詳解】(1)y=300+30(60﹣x)=﹣30x+1.(2)設每星期利潤為W元,W=(x﹣40)(﹣30x+1)=﹣30(x﹣55)2+2.∴x=55時,W最大值=2.∴每件售價定為55元時,每星期的銷售利潤最大,最大利潤2元.(3)由題意(x﹣40)(﹣30x+1)≥6480,解得52≤x≤58,當x=52時,銷售300+30×8=540,當x=58時,銷售300+30×2=360,∴該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝360件.本題主要考查一次函數(shù)的應用和二次函數(shù)的應用,注意綜合運用所學知識解題.24、1.5千米【解析】

先根據(jù)相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性質解答即可【詳解】在△ABC與△AMN中,,,∴,∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得MN=1.5(千米),因此,M、N兩點之間的直線距離是1.5千米.此題考查相似三角形的應用,解題關鍵在于掌握運算法則25、(1)D、E、F三點是同在一條直線上.(2)6x2﹣13x+6=1.【解析】(1)利用切線長定理及梅氏定理即可求證;(2)利用相似和韋達定理即可求解.解:(1)結論:D、E、F三點是同在一條直線上.證明:分別延長AD、BC交于點K,由旁切圓的定義及題中已知條件得:AD=DK,AC=CK,再由切線長定理得:AC+CE=AF,BE=BF,∴KE=AF.∴,由梅涅勞斯定理的逆定理可證,D、E、F三點共線,即D、E、F三點共線.(2)∵AB=AC=5,BC=6,∴A、E、I三點共線,CE=BE=3,AE=4,連接IF,則△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四點共圓.設⊙I的半徑為r,則:,∴,即,,∴由△AEF∽△DEI得:,∴.∴,因此,由韋達定理可知:分別以、為兩根且二次項系數(shù)為6的一個一元二次方程是6x2﹣13x+6=1.點睛:本是一道關于圓的綜合題.正確分析圖形并應用圖形的性質是解題的關鍵.26、(1)y=x2+x﹣(2)存在,(﹣1﹣2,2)或(﹣1+2,2)(3)點F的坐標為(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四邊形的面積為1【解析】

(1)設拋物線解析式為y=ax2+bx+c,把(﹣3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根據(jù)拋物線解析式可知頂點P的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論