




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
MolecularMicrobialEcologyManual
1.SimplifiedprotocolsforthepreparationofgenomicDNAfrombacterialcultures
2.ExtractionofribosomalRNAfrommicrobialcultures
3.ExtractionofmicrobialDNAfromaquaticsources:Marineenvironments
4.ExtractionofmicrobialDNAfromaquaticsources:Freshwater
5.MethodsforextractingDNAfrommicrobialmatsandcultivatedmicro-organisms:highmolecularweightDNAfromFrenchpresslysis
6.ExtractionofmicrobialDNAfromaquaticsediments
7.ExtractionofmicrobialRNAfromaquaticsources:Marineenvironments
8.ExtractionoftotalRNAandDNAfrombacterioplankton
9.MethodsforextractingRNAorribosomesfrommicrobialmatsandcultivatedmicroorganisms
10.Cellextractionmethod
11.DNAandRNAextractionfromsoil
12.RapidsimultaneousextractionofDNAandRNAfrombulkandrhizospheresoil
13.DirectExtractionofFungalDNAfromSoil
14.Purificationofmicrobialgenesfromsoilandrhizospherebymagneticcapturehybridizationandsubsequentamplificationoftargetgenes
byPCR
15.Directribosomeisolationfromsoil
16.DNAExtractionfromActinorhizalNodules
17.Quantificationofnucleicacids
18.Quantificationofnucleicacidsfromaquaticenvironmentsbyusinggreen-fluorescentdyesandmicrotiterplates
19.DegradationandturnoverofextracellularDNAinmarinesediments
20.IncorporationofthymidineintoDNAofsoilbacteria
21.Preparationofradioactiveprobes
22.DetectionofNucleicAcidsbyChemiluminescence
23.Parametersofnucleicacidhybridizationexperiments
24.DetectionandquantificationofmicrobialDNAsequencesinsoilbySouthern-anddot/slotblothybridization
25.DetectionofmicrobialDNAsequencesbycolonyhybridization
26.PolymerasechainreactionanalysisofsoilmicrobialDNA
27.Detectionofmicrobialnucleicacidsbypolymerasechainreactioninaquaticsamples
28.IsolationanddetectionofbacterialDNAsequencesindairyproducts
29.QuantitativePCRofenvironmentalsamples
30.Molecularbeaconsforhomogeneousreal-timemonitoringofamplificationproducts
31.DetectionandenumerationofsoilbacteriausingtheMPN-PCRtechnique
32.DetectionofmRNAandrRNAviareversetranscriptionandPCRinsoil
33.AmplificationofribosomalRNAsequences
34.Cloning16SrRNAgenesandutilizationtotypebacterialcommunities
35.SARST,SerialAnalysisofRibosomalSequenceTags
36.OligonucleotideFingerprintingofRibosomalRNAGenes(OFRG)
37.GenotypingofbacterialisolatesfromtheenvironmentusingLow-Molecular-WeightRNAfingerprints
38.Characterizationofthediversityofecologicallyimportantmicrobesbyrep-PCRgenomicfingerprinting
39.GenomicFingerprintingofMicro-organismsbyAFLP(TM)andERIC-anchorPCR
40.Theuseofpulsed-fieldgelelectrophoresistostudybacteriarecoveredfromtheenvironment
41.EasyindividualstrainandcommunitytypingbyrDNAITS1analysis
42.InsituPCRmethodologiesforvisualizationofmicroscalegeneticandtaxonomicdiversitiesofprokaryoticcommunities
43.Sensitivemulti-colorfluorescenceinsituhybridizationfortheidentificationofenvironmentalmicroorganisms
44.UseofClonedArtificialTargetsforFISH(catFISH)fortheoptimizationofoligonucleotideprobehybridizationconditionswith16SrRNA
clonesforinsituquantificationofuncultivatedprokaryoticcells
45.Denaturinggradientgelelectrophoresis(DGGE)inmicrobialecology
46.FungalCommunityAnalysisusingPCR-DenaturingGradientGelElectrophoresis(DGGE)
47.TheAnalysisofMicrobialCommunitieswithTerminalRestrictionFragmentLengthPolymorphism(T-RFLP)
48.MicrobialcommunityanalysisbyPCR-single-strandconformationpolymorphism(PCR-SSCP)
49.IsolationofhighmolecularweightgenomicDNAfromsoilbacteriaforgenomiclibraryconstruction
50.UseofBiolog(R)fortheCommunityLevelPhysiologicalProfiling(CLPP)ofenvironmentalsamples
51.Auorescentstainingofmicrobesfortotaldirectcounts
52.DetectionofmicrobesbyScanningConfocalLaserMicroscopy(SCLM)
53.Productionofanti-microbialantibodiesandtheirutilizationinstudiesofmicrobialautecologybyimmunofluorescencemicroscopyand
insituCMEIASimageanalysis
54.Theslideimmunoenzymaticassay(SIA):Asimpleandlowcostsystemsuitablefordetectingwater-bornemicrobeswithouttheneed
forsophisticatedtechnologicalinfrastructure
55.InsituhybridizationtodetectmicrobialmessengerRNAinplanttissues
56.Fattyacidanalysisintheidentification,taxonomyandecologyof(plantpathogenic)bacteria
57.Determinationofmicrobialcommunitystructureusingphospholipidfattyacidprofiles
58.Respiratorylipoquinonesasbiomarkers
59.EnvironmentalProteomics:MethodsandApplicationsforAquaticEcosystems
60.Naturaltransformationinaquaticenvironments
61.Naturaltransformationinsoil:microcosmstudies
62.PlasmidTransferinAquaticEnvironments
63.Conjugationintheepilithon
64.Detectionofbacterialconjugationinsoil
65.Transductionintheaquaticenvironment
66.Phageecologyandgeneticexchangeinsoil
67.Lacasamarkergenetotrackmicrobesintheenvironment
68.XylEasamarkergeneformicroorganisms
69.GUSasamarkertotrackmicrobes
70.ThecelBmarkergene
71.Visualisationofmicrobesandtheirinteractionsintherhizosphereusingautofluorescentproteinsasmarkers
72.Identificationofbacteriabytheirintrinsicsequences:Probedesignandtestingoftheirspecificity
73.SubtractionhybridizationfortheproductionofhighspecificityDNAprobes
74.Considerationsfortheuseoffunctionalmarkersandfieldreleaseofgeneticallyengineeredmicroorganismstosoilsandplants
75.Applicationofecologicaldiversitystatisticsinmicrobialecology
76.Samplingefficiencyandinterpretationofdiversityin16SrRNAgenelibraries
77.LIBSHUFFComparisonsof16SrRNAGeneCloneLibraries
78.Clusteranalysisandstatisticalcomparisonofmolecularcommunityprofiledata
79.Computer-assistedanalysisofmolecularfingerprintprofilesanddatabaseconstruction
80.Multivariatestatisticalmethodsandartificialneuralnetworksforanalysisofmicrobialcommunitymolecularfingerprints
81.Quantitativefluorescenceinsituhybridisation(FISH):statisticalmethodsforvalidcellcounting
82.Oligonucleotideprobedesignformixedmicrobialcommunitymicroarraysandotherapplicationsandimportantconsiderationsfordata
analysis
83.Designofmicroarraysforgenome-wideexpressionprofiling
84.Assessmentofthemembranepotential,intracellularpHandrespirationofbacteriaemployingfluorescencetechniques
85.Useofmicroelectrodestomeasureinsitumicrobialactivitiesinbiofilms,sediments,andmicrobialmats
86.Applicationofwhole-cellbiosensorsinsoil
87.Detectionofbacterialhomoserinelactonequorumsensingsignals
88.BrdUSubstrateUtilizationAssay
89.Stableisotopeprobingofnucleicacidstoidentifyactivemicrobialpopulations
90.Linkingmicrobialcommunitystructureandfunctioning:stableisotope(13C)labelingincombinationwithPLFAanalysis
91.Correlatingsingle-cellcountwithfunctioninmixednaturalmicrobialcommunitiesthroughSTARFISH
92.DifferentialdisplayofmRNA
93.Macro-arraysprotocolsforgeneexpressionstudiesinbacteria
94.Oligonucleotide-basedfunctionalgenearraysforanalysisofmicrobialcommunitiesintheenvironment
95.ProteomicAnalysisofBacterialSystems
MolecularMicrobialEcologyManual
KluwerAcademicPublishers2004
10.1007/l-4020-2177-l_l
Section1-IsolationofNucleicAcids
Simplifiedprotocolsforthepreparationof
genomicDNAfrombacterialcultures
EdwardMoore1,AngelikaArnscheidt1,AnnetteKrtJger1,
CarstenStrOmpl1andMargitMau1
(1)DivisionofMicrobiology,GBF-GermanNationalResearchCentreforBiotechnology,
MascheroderWeg1,D-38124,Braunschweig,Germany
Introduction
Thedevelopmentofmethodologiesfortheanalysisofmicroorganismsand
microbialecology,atthemolecularlevel(i.e.,nucleicacids,proteins,
lipids,andtheirgenes),hasprogressedphenomenallyinrecentyears.
Eachmethodologyhasspecificadvantagesanddisadvantages,or
complications.However,theadvancesinPCR,cloning,geneprobing,
sequencingandfingerprintinghaveenabledtechniquesexploitingnucleic
acidstobeutilisedextensivelyfortheanalysisofmicroorganisms.Often,
suchprotocolsrequire,firstly,thatthenucleicacidsareextractedin
aformwhichcanbeemployedfortheanalyses.Thismay,insomecases,
bemoredifficultthananticipatedinitially,sincemanybacteriaare
extremelyresistanttocelldisruption.Typically,theseare
Gram-positivebacteria(e.g.,Mycobacteriunispp.,Peptococcusspp.,
Rhodococcusspp.,etc.),aswellassomeArchae(e.g.,methanogens),with
thickcellwallsofpolysaccharideorpseudopeptidoglycan,andmany
speciesoffungiandalgae.
Generalconsiderations
Severalprotocolshavebeendevelopedanddescribedforthepreparation
ofgenomicDNAfrombacteria,beginningwiththeprototypalmethodof
Marrnur[16],whichinvolved:a)celldisruptionbyanenzyme-detergent
lysis;b)extractionswithorganicsolvents;andc)recoveryoftheDNA
byalcoholprecipitation.Subsequentprotocolshaveusuallyinvolvedsome
modificationofoneormoreofthesegeneralsteps.
Celldisruption
ThemostdifficultanduncertainstepinobtainingDNAfrombacterial
culturesisthatofdisruptingthecells.Thedifficultiesderive,inpart,
fromimposedlimitationsinthehandlingofthepreparations,whichare
necessaryforobtaininggenomicDNAofhighmolecularweight.Thus,in
general,themostdesirablemeansofdisruptingbacterialcellsfor
obtaininggenomicDNAisthroughenzymaticdigestionanddetergentlysis.
Suchastrategyisenhancedbypriortreatmentofcellswithametal
chelatingagent,suchasethylenediamine-tetraaceticacid(EDTA).Ifthe
cellwalloftheorganismissusceptibletosuchtreatments,relatively
highmo1ecu1ar-weightgenomicDNAcanbeobtainedwhichisapplicablefor
anumberofanalyticaltechniques.Further,thelysisshouldbecarried
outinabuffered(pH8-9)mediumcontainingEDTA.ThealkalinepHreduces
electrostaticinteractionsbetweenDNAandbasicproteins,assistsin
denaturingothercellularproteinsandinhibitsnucleaseactivities.EDTA
bindsdivalentcations,particularlyMg2andMn2',reducingthe
stabilitiesofthewallsandmembranesandalsoinhibitsnucleaseswhich
havearequirementformetalcations.
Celldisruptionbyenzymatictreatments
Lysozyme,isolatedcommerciallyfromchickeneggwhite,isamemberof
thebroadclassofmuramidaseswhichcatalysethehydrolysisofthe
P-1,4-glycosidiclinkagebetweentheN-acetylmuramic
acid-N-acetylglucosaminerepeatingunit,comprisingamajorpartofthe
peptidoglycanlayerofthecellwallsofmostbacteriaLysozymeis
especiallyeffectiveindisruptingbacterialcellswhenusedin
combinationwithEDTA[J5].Lysozymeandrelatedenyzmesareusefulfor
disruptingthecellsofabroadrangeofbacterialspecies,althoughmany
speciesarenotparticularlysusceptibletomuramidasetreatmentdue,
presumably,tolayersofproteinorcapsularslime,whichprotectthe
peptidoglycan.Additionally,astheircellwallsdonotcontain
peptidoglycan,alldescribedspeciesofArchaeareresistanttolysozyme
activity.
ProteinaseK,aserineproteaseproducedbythefungusTritirachiumalbum,
cleavesadjacenttothecarboxylgroupsofaliphaticandaromaticamino
acidsinvolvedinpeptidebonding\_4\,includingthosecomprisingthe
peptidecross-linkinginterbridgesofthepeptidoglycanlayersofthe
cellwallsofbacteria.TheapplicabilityofProteinaseKfordisrupting
bacterialcellwallsisenhancedbyitsinsensitivitytospecific
chelatingagents,allowingittobeutilisedincombinationwithEDTAand
lysozyme.However,thepeptideinterbridgesofthecellwallsofdifferent
species,formedbydifferentcombinationsofcomponentaminoacids,with
inherentlydifferentsusceptibilitiestocleavage,maybemoreorless
resistanttoProteinaseKlysis.
WhilelysozymeandproteinaseKare,probably,theenzymesmostcommonly
usedforthedisruptionofbacterialcells,additionalbacterial
cell-disruptingenzymesalsohavebeenreportedwithbroadornarrow
specificities.Othermuramidases,mutanolysinandlysostaphinreact,
analogoustolysozyme,atthepeptidelinkagesinthecellwalls,although
thespecieswhicharesusceptibletotheseenzymesdifferfromthosewhich
areaffectedbylysozyme[幺20,26].Subtilisinsareextracellular
proteases,producedbyBacillusspp.,exhibitingabroadspecificityin
hydrolysingmostpeptideandesterbonds\_24].Theyarenotinactivated
bychelatingagents,whichmakesthemapplicableincombinationwithEDTA.
Theapplicationofachromopeptidasehasbeenlimitedtothedisruption
ofGram-positivecells,principallystaphylococci[9],although
applicationswithotherbacteriahavebeenreported.
Celldisruptionbydetergenttreatments
Detergentsprovideeffective,yetrelativelygentle,meansfordisrupting
cells,bindingstronglytoproteinsandcausingirreversibledenaturation.
Further,conditionswhichcausedissociationofprotein(i.e.,highpH,
lowandhighionicstrength,etc.)tendtoenhance,aswell,the
solubilisationefficienciesofdetergents\_7].Detergentsare
particularlyeffectivefordisruptingbacteriawhentheircellwallshave
beendamaged(e.g.,throughtheactionsofmetalchelatingagents,
lysozymeandProteinaseK)priortotheiradditiontothecellsuspension.
Sodiumdodecylsulfate(SDS)isananionicdetergentwhichreacts,atlow
concentrations,atproteinhydrophobicsites,bindingcellularproteins
andlipoproteins,formingSDS-polypeptidemicellarcomplexes,and
effectivelydenaturingthemandpromotingthedissociationofnucleic
acids[77].Further,SDSinhibitsnucleasesanddoesnotinteractwith
thehydrophilicnucleicacids.SomeproteinsformSDScomplexesonlyafter
theyhavebeenheatedortreatedwithreagents(e.g.,mercaptoethanol)
tocleaveintraproteindisulfidebonds.
N-lauroylsarcosine(Sarcosyl),empirically,maybemoreeffectiveat
denaturingcellularpolysaccharidematerialandcanbeused,insteadof
SDS,forthedisruptionofbacterialcells(e.g.,Azotobacter,
Beijerinckia,Klebsiella,etc.)whichproducecopiousamountsofcapsule.
Cetyltrimethylammoniumbromide(CTAB),acationicdetergent,hasbeen
usedextensivelyinthepreparationofnucleicacidsfromfungiandplants,
whenlargeamountsofpolysaccharidematerialstendtointerferewiththe
extraction.However,CTABalsohasbeenprovenusefulforDNAextractions
frombacterialcellsbydenaturingandprecipitatingthecellwall
1ipopo1ysaccharidesandproteinsInthepresenceofmonovalent
cation(e.g.,Na")concentrationsabove0.5M,DNAwillremainsoluble.
Nonpolardetergents,includingtheTritonXseries,Tweenseries,Nonidet
P-40,etc.,aregenerally"milder”solubilisingagentsthanthepolar
detergentsandtheyseemtohaveamuchmorelimitedabilitytoinitiate
thedisruptionofbacterialcells.
Celldisruptionby“physical”methods
Bacteriawhosecellwallsarenotsusceptibletoenzymaticanddetergent
treatmentsmaybedisruptedusing“harsher”(i.e.,alsoontheDNA)
methodswhichmaybedescribed,arbitrarily,as"physical”or
“mechanical”[10,77,14,19\.SuchmethodsgenerateDNAwhichisoften
shearedandusuallynotoftherelativelyuniform,large,molecularweight
thatcanbeattainedusingenzymaticanddetergentdisruption.Thus,such
methodsmaynotbeappropriateforpreparingDNAforspecificanalytical
techniques.However,ininstanceswhereinithasnotbeencriticalthat
theDNAbeofuniformhighmolecularweight,methodsemployingaFrench
pressurecellorasonicatorhavebeenusedwithsuccess.Theuseofglass
particleswiththe(mini)-beadbeaterisparticularlyeffectivefor
disruptingmostbacteriaandisthemethodofchoiceforthepreparation
ofDNAfrombacterialcellsinproblematicmatrices(e.g.,soils)\_23\.
Additionally,amethodfortheproductionofhighmolecularweightDNA
fromGram-positiveandacid-fastbacteriausingamicrowaveovenhasbeen
described[7].However,theefficaciesofsuchmethods,allofwhich
requireadditional,specialised,equipment,havebeenlimited,inmost
cases,intherangeofbacteriaforwhichagivenmethodcanbeapplied.
Afurtherapplicationwhichhasbeenshowntobeeffective,particularly
incombinationwithothersteps,fordisruptingextremelyrecalcitrant
bacteriaisthefreeze(inliquidnitrogen)andfastthaw(at95-98°C)
technique.Thismethodisoftenusedinproceduresforextractingnucleic
acidsdirectlyfromenvironmentalsamples,suchassoilandsediment[22].
Suchatreatmentenhancesbacterialcelldisruption(e.g.,particularly
speciesproducingprotectivecapsularslimeandthoseinvolvedinthe
formationofbiofilms)byinducingphasechangesincellmembranesthrough
successive,rapid,extremesintemperaturewhichrendercellsmore
susceptibletoenzymaticanddetergentlysis.
Nucleicacidextractions
TheisolationofDNAfromcells(i.e.,selectivelyeliminatingother
cellularcomponentsexcepttheDNA)isthemoststraightforwardofthe
threegeneralsteps.Themethodsofchoiceforextractions,traditionally,
haveinvolvedtheapplicationoforganicsolvents(e.g.,phenoland
chloroform)[13],whichinteractwithhydrophobiccomponentsofprotein
andlipoprotein,causingdenaturation.Itisbelievedthatforces
maintainingthehydrophobicinteriorsofproteins,throughtheirnative
conformations,areovercomebyexposuretohydrophobicsolvents,
resultingintheunfoldingandprecipitationoftheprotein[6].The
precipitateofdenaturedcellularmaterialremainswithintheorganic
phase,whichisseparatedbycentrifugation.
Ingeneral,phenolisaneffectivedenaturingagentofprotein,while
chloroformwillbemoreeffectiveforpolysaccharidematerials.Thus,for
theextractionofDNAfrombacterialcells,mixturesofphenol/chloroform
aremoreeffectivethaneitheris,alone.Phenolofhighpurity(i.e.,
redistilled),saturatedandequilibratedwithbuffer(pH8)shouldbeused
fortheextractions.
RecoveryofDNA
ThestandardmethodforrecoveringDNAfromcelllysatesandsuspensions
isbytheuseofalcohol(i.e.,ethanolorisopropanol)reversible
denaturation(i.e.,thehelicalstructureisextensivelydestroyed)and
subsequentprecipitation[5],followedbycentrifugation.Itis
recognisedthatDNAprecipitatespoorlyinsalt-freesolutionsandthat
alcoholprecipitationsshouldbeperformedinthepresenceofamonovalent
cationwithaconcentrationof,atleast,0.1M.PrecipitationofDNAin
suspensionsisinitiatedbyadding0.1suspensionvolumeof3Msodium
acetate(pH5.2)and2.0-3.0suspensionvolumes(calculatedafterthe
additionofsalt)of100%ethanol(forDNAsuspensionsoflow
concentration,ahigherratioofethanoltosuspensionvolumewill
facilitateDNAprecipitation)\_2f\.Alternatively,0.5volumesof7.5M
ammoniumacetate(pH8)canbeusedinsteadofsodiumacetate[5].Inthis
case,smallnucleicacidfragments(approximately150nucleotidesand
smaller),willnotbeprecipitated,whichmaybeadvantageousinsome
cases.Isopropanol(0.5-1.0volumes)maybeused,ratherthanethanol,
particularlywhensmallvolumes(e.g.,lessthan1.0ml)areneeded.
AlthoughithasbecomeanacceptedpracticetocarryoutDNA
precipitationsatextremecoldtemperatures(e.g.,-70°C),datasuggest
thatprecipitationsatsuchtemperaturespresentnosignificantadvantage
overprecipitationscarriedoutinicewater(i.e.,approximately0°C)
and,infact,maybecounterproductive\_27\(Fig.1).Further,whilethe
majorityofDNAinconcentratedsuspensionsisrecoveredquickly(i.e.,
within5minutes)bycentrifugation(12,000-15,000Xg),therecovery
ofDNAfromdilutesuspensionsmayrequirecentrifugationsforaslong
as30minutes(Fig.2).
o
o
o9o
6.
x
O8o
O
O
CM7o
二
e
%(
)6o
5o
8
H
4o
-700
Temperature(℃)
Figure1TherecoveryofDNAasafunctionoftheprecipitationtemperature.Precipitationsof
varyingamounts(0.6ng-010pg)ofDNAatextremlylowtemperatures(i.e.,-70℃)areless
efficientthanat0℃.Theefficienciesofrecovery,bycentrifugation(12,000xg,6℃),were
alsoobservedtobedependentupontheamountsofDNAinsuspension.Thevaluesindicated
inthegraphrepresentthemeans,calculatedfromtheobservedrecoveriesfromsuspension,
ofvaryingamountsofDNA.Therangesofobservedrecoveriesareindicated,withthelowest
andhighestrecoveries,ateachtemperaturetested,andcorrespondtothelowestandhighest
concentrationsofDNA,respectively.ThegraphwaspreparedfromdatatakenfromZeugin
andHartley,1985\27\.
51015202530
Centrifugationtime(min)
Figure2TherecoveryofDNAasafunctionofthecentrifugationtime.Therecoveryofvarying
amounts(0.6ng-10pg)ofDNAisenhancedbyincreasedcentrifugationtimes.The
efficienciesofrecovery,bycentrifugation(12,000xg,6℃),werealsoobservedtobe
dependentupontheamountsofDNAinsuspension.Thevaluesindicatedinthegraph
representthemeans,calculatedfromtheobservedrecoveriesfromsuspension,ofvarying
amountsofDNA.Therangesofobservedrecoveriesareindicated,withthelowestandhighest
recoveries,ateachcentrifugationtimetested,andcorrespondto.thelowestandhighest
concentrationsofDNA,respectively.ThegraphwaspreparedfromdatatakenfromZeugm
andHartley,1985\27\.
Animportantconsiderationtokeepinmindthroughouttheextraction
processistherelationshipbetweentheamountofDNAinsuspensionand
theability,ultimately,torecoverit.
InstudiestodeterminetheoptimalconditionsfortherecoveryofDNA
fromsuspensionsbyprecipitationandcentrifugation[2刁,theamountof
DNArecoveredwasobservedtobeproportionaltotheconcentrationin
suspension(Fig.3).Thus,itisimportanttoconsiderthisrelationship
whendecidingupontheextractionprotocoltouseandsubsequenthandling
oftheDNA.
0
0
9
.
6
K
0
0
0
7
二
b
%(
)
L
i
o
t
t
a
Figure3TherecoveryofDNAasafunctionoftheamountofDNAinsuspension.The
recoveryofDNAwasobservedtobedepend
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 六年級(jí)科學(xué)復(fù)習(xí)備考計(jì)劃
- 部編版小學(xué)二年級(jí)下冊(cè)家長(zhǎng)會(huì)活動(dòng)計(jì)劃
- 2025年高校教研室在線教育計(jì)劃
- 2025年度四年級(jí)英語(yǔ)教學(xué)目標(biāo)設(shè)定
- 城鄉(xiāng)聯(lián)合子女課外輔導(dǎo)費(fèi)用分?jǐn)偱c支持合同
- 礦山開采權(quán)委托管理與資源整合合作協(xié)議
- 幼兒園秋季志愿服務(wù)活動(dòng)計(jì)劃
- 小學(xué)一年級(jí)下冊(cè)班主任新生適應(yīng)計(jì)劃
- 一年級(jí)美術(shù)下冊(cè)綜合素質(zhì)培養(yǎng)計(jì)劃
- 二年級(jí)數(shù)學(xué)復(fù)習(xí)計(jì)劃與評(píng)估
- 中華人民共和國(guó)公共安全行業(yè)標(biāo)準(zhǔn)
- 介紹福建紅色文化
- 解分式方程50題八年級(jí)數(shù)學(xué)上冊(cè)
- GB/T 10599-2023多繩摩擦式提升機(jī)
- 蜜蜂的傳粉過程
- 公招資格復(fù)審個(gè)人委托書
- 化膿性骨髓炎臨床診療指南
- DB22-T 3454-2023 藍(lán)莓基質(zhì)栽培技術(shù)規(guī)程
- 2023急性有機(jī)磷農(nóng)藥中毒診治要求
- 人教版八年級(jí)物理下冊(cè) 實(shí)驗(yàn)題05 簡(jiǎn)單機(jī)械實(shí)驗(yàn)(含答案詳解)
- 全國(guó)優(yōu)質(zhì)課一等獎(jiǎng)人教版高中化學(xué)必修第二冊(cè)《金屬礦物的開發(fā)利用》公開課課件
評(píng)論
0/150
提交評(píng)論