




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省汕頭市潮陽實驗校2025年初三一輪復習:三角函數與解三角形檢測試題含答案注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.為了解某社區居民的用電情況,隨機對該社區10戶居民進行調查,下表是這10戶居民2015年4月份用電量的調查結果:居民(戶)1234月用電量(度/戶)30425051那么關于這10戶居民月用電量(單位:度),下列說法錯誤的是()A.中位數是50 B.眾數是51 C.方差是42 D.極差是212.關于反比例函數,下列說法正確的是()A.函數圖像經過點(2,2); B.函數圖像位于第一、三象限;C.當時,函數值隨著的增大而增大; D.當時,.3.若關于x的一元二次方程x(x+2)=m總有兩個不相等的實數根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<14.在一個不透明的口袋里有紅、黃、藍三種顏色的小球,這些球除顏色外都相同,其中有5個紅球,4個藍球.若隨機摸出一個藍球的概率為,則隨機摸出一個黃球的概率為()A. B. C. D.5.4的平方根是()A.16 B.2 C.±2 D.±6.二次函數的圖像如圖所示,下列結論正確是()A. B. C. D.有兩個不相等的實數根7.如圖,任意轉動正六邊形轉盤一次,當轉盤停止轉動時,指針指向大于3的數的概率是()A. B. C. D.8.如圖,OP平分∠AOB,PC⊥OA于C,點D是OB上的動點,若PC=6cm,則PD的長可以是()A.7cm B.4cm C.5cm D.3cm9.如圖所示,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點A逆時針旋轉,使點C落在線段AB上的點E處,點B落在點D處,則BD兩點間的距離為()A.2 B. C. D.10.如圖,點E是矩形ABCD的邊AD的中點,且BE⊥AC于點F,則下列結論中錯誤的是()A.AF=CF B.∠DCF=∠DFCC.圖中與△AEF相似的三角形共有5個 D.tan∠CAD=二、填空題(共7小題,每小題3分,滿分21分)11.=__________12.分解因式:4ax2-ay2=________________.13.如圖,利用圖形面積的不同表示方法,能夠得到的代數恒等式是____________________(寫出一個即可).14.為參加2018年“宜賓市初中畢業生升學體育考試”,小聰同學每天進行立定跳遠練習,并記錄下其中7天的最好成績(單位:m)分別為:2.21,2.12,2.1,2.39,2.1,2.40,2.1.這組數據的中位數和眾數分別是_____.15.方程3x(x-1)=2(x-1)的根是16.如圖,在矩形ABCD中,AB=3,AD=5,點E在DC上,將矩形ABCD沿AE折疊,點D恰好落在BC邊上的點F處,那么cos∠EFC的值是.17.若關于x的一元二次方程(a﹣1)x2﹣x+1=0有實數根,則a的取值范圍為________.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,AB=AC,點P、D分別是BC、AC邊上的點,且∠APD=∠B,求證:AC?CD=CP?BP;若AB=10,BC=12,當PD∥AB時,求BP的長.19.(5分)已知拋物線y=ax2+bx+2過點A(5,0)和點B(﹣3,﹣4),與y軸交于點C.(1)求拋物線y=ax2+bx+2的函數表達式;(2)求直線BC的函數表達式;(3)點E是點B關于y軸的對稱點,連接AE、BE,點P是折線EB﹣BC上的一個動點,①當點P在線段BC上時,連接EP,若EP⊥BC,請直接寫出線段BP與線段AE的關系;②過點P作x軸的垂線與過點C作的y軸的垂線交于點M,當點M不與點C重合時,點M關于直線PC的對稱點為點M′,如果點M′恰好在坐標軸上,請直接寫出此時點P的坐標.20.(8分)為了計算湖中小島上涼亭P到岸邊公路l的距離,某數學興趣小組在公路l上的點A處,測得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達公路l上的點B處,再次測得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結果保留整數,參考數據:≈1.414,≈1.732)21.(10分)如圖,已知二次函數與x軸交于A、B兩點,A在B左側,點C是點A下方,且AC⊥x軸.(1)已知A(-3,0),B(-1,0),AC=OA.①求拋物線解析式和直線OC的解析式;②點P從O出發,以每秒2個單位的速度沿x軸負半軸方向運動,Q從O出發,以每秒個單位的速度沿OC方向運動,運動時間為t.直線PQ與拋物線的一個交點記為M,當2PM=QM時,求t的值(直接寫出結果,不需要寫過程)(2)過C作直線EF與拋物線交于E、F兩點(E、F在x軸下方),過E作EG⊥x軸于G,連CG,BF,求證:CG∥BF22.(10分)已知線段a及如圖形狀的圖案.(1)用直尺和圓規作出圖中的圖案,要求所作圖案中圓的半徑為a(保留作圖痕跡)(2)當a=6時,求圖案中陰影部分正六邊形的面積.23.(12分)如圖,在△ABC中,點D,E分別在邊AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于點F.(1)求證:;(2)請探究線段DE,CE的數量關系,并說明理由;(3)若CD⊥AB,AD=2,BD=3,求線段EF的長.24.(14分)下表給出A、B、C三種上寬帶網的收費方式:收費方式月使用費/元包時上網時間/h超時費/(元/min)A30250.05B50500.05C120不限時設上網時間為t小時.(I)根據題意,填寫下表:月費/元上網時間/h超時費/(元)總費用/(元)方式A3040方式B50100(II)設選擇方式A方案的費用為y1元,選擇方式B方案的費用為y2元,分別寫出y1、y2與t的數量關系式;(III)當75<t<100時,你認為選用A、B、C哪種計費方式省錢(直接寫出結果即可)?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題解析:10戶居民2015年4月份用電量為30,42,42,50,50,50,51,51,51,51,平均數為(30+42+42+50+50+50+51+51+51+51)=46.8,中位數為50;眾數為51,極差為51-30=21,方差為[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.故選C.考點:1.方差;2.中位數;3.眾數;4.極差.2、C【解析】
直接利用反比例函數的性質分別分析得出答案.【詳解】A、關于反比例函數y=-,函數圖象經過點(2,-2),故此選項錯誤;B、關于反比例函數y=-,函數圖象位于第二、四象限,故此選項錯誤;C、關于反比例函數y=-,當x>0時,函數值y隨著x的增大而增大,故此選項正確;D、關于反比例函數y=-,當x>1時,y>-4,故此選項錯誤;故選C.此題主要考查了反比例函數的性質,正確掌握相關函數的性質是解題關鍵.3、C【解析】
將關于x的一元二次方程化成標準形式,然后利用Δ>0,即得m的取值范圍.【詳解】因為方程是關于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.本題熟練掌握一元二次方程的基本概念是本題的解題關鍵.4、A【解析】
設黃球有x個,根據摸出一個球是藍球的概率是,得出黃球的個數,再根據概率公式即可得出隨機摸出一個黃球的概率.【詳解】解:設袋子中黃球有x個,根據題意,得:,解得:x=3,即袋中黃球有3個,所以隨機摸出一個黃球的概率為,故選A.此題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數與總情況數之比.得到所求的情況數是解決本題的關鍵.5、C【解析】試題解析:∵(±2)2=4,∴4的平方根是±2,故選C.考點:平方根.6、C【解析】【分析】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0;由對稱軸為x==1,可得2a+b=0;當x=-1時圖象在x軸下方得到y=a-b+c<0,結合b=-2a可得3a+c<0;觀察圖象可知拋物線的頂點為(1,3),可得方程有兩個相等的實數根,據此對各選項進行判斷即可.【詳解】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0,故A選項錯誤;∵對稱軸x==1,∴b=-2a,即2a+b=0,故B選項錯誤;當x=-1時,y=a-b+c<0,又∵b=-2a,∴3a+c<0,故C選項正確;∵拋物線的頂點為(1,3),∴的解為x1=x2=1,即方程有兩個相等的實數根,故D選項錯誤,故選C.【點睛】本題考查了二次函數圖象與系數的關系:對于二次函數y=ax2+bx+c(a≠0)的圖象,當a>0,開口向上,函數有最小值,a<0,開口向下,函數有最大值;對稱軸為直線x=,a與b同號,對稱軸在y軸的左側,a與b異號,對稱軸在y軸的右側;當c>0,拋物線與y軸的交點在x軸的上方;當△=b2-4ac>0,拋物線與x軸有兩個交點.7、D【解析】分析:根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發生的概率.詳解:∵共6個數,大于3的有3個,∴P(大于3)=.故選D.點睛:本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.8、A【解析】
過點P作PD⊥OB于D,根據角平分線上的點到角的兩邊距離相等可得PC=PD,再根據垂線段最短解答即可.【詳解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,則PD的最小值是6cm,故選A.考查了角平分線上的點到角的兩邊距離相等的性質,垂線段最短的性質,熟記性質是解題的關鍵.9、C【解析】解:連接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵將△ABC繞點A逆時針旋轉,使點C落在線段AB上的點E處,點B落在點D處,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故選C.點睛:本題考查了勾股定理和旋轉的基本性質,解決此類問題的關鍵是掌握旋轉的基本性質,特別是線段之間的關系.題目整體較為簡單,適合隨堂訓練.10、D【解析】
由又AD∥BC,所以故A正確,不符合題意;過D作DM∥BE交AC于N,得到四邊形BMDE是平行四邊形,求出BM=DE=BC,得到CN=NF,根據線段的垂直平分線的性質可得結論,故B正確,不符合題意;
根據相似三角形的判定即可求解,故C正確,不符合題意;
由△BAE∽△ADC,得到CD與AD的大小關系,根據正切函數可求tan∠CAD的值,故D錯誤,符合題意.【詳解】A.∵AD∥BC,∴△AEF∽△CBF,∴∵∴,故A正確,不符合題意;B.過D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DF=DC,∴∠DCF=∠DFC,故B正確,不符合題意;C.圖中與△AEF相似的三角形有△ACD,△BAF,△CBF,△CAB,△ABE共有5個,故C正確,不符合題意;D.設AD=a,AB=b,由△BAE∽△ADC,有∵tan∠CAD故D錯誤,符合題意.故選:D.考查相似三角形的判定,矩形的性質,解直角三角形,掌握相似三角形的判定方法是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、2;【解析】試題解析:先求-2的平方4,再求它的算術平方根,即:.12、a(2x+y)(2x-y)【解析】
首先提取公因式a,再利用平方差進行分解即可.【詳解】原式=a(4x2-y2)
=a(2x+y)(2x-y),
故答案為a(2x+y)(2x-y).本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.13、(a+b)2=a2+2ab+b2【解析】
完全平方公式的幾何背景,即乘法公式的幾何驗證.此類題型可從整體和部分兩個方面分析問題.本題從整體來看,整個圖形為一個正方形,找到邊長,表示出面積,從部分來看,該圖形的面積可用兩個小正方形的面積加上2個矩形的面積表示,從不同角度思考,但是同一圖形,所以它們面積相等,列出等式.【詳解】解:,此題考查了完全平方公式的幾何意義,從不同角度思考,用不同的方法表示相應的面積是解題的關鍵.14、2.40,2.1.【解析】∵把7天的成績從小到大排列為:2.12,2.21,2.39,2.40,2.1,2.1,2.1.∴它們的中位數為2.40,眾數為2.1.故答案為2.40,2.1.點睛:本題考查了中位數和眾數的求法,如果一組數據有奇數個,那么把這組數據從小到大排列后,排在中間位置的數是這組數據的中位數;如果一組數據有偶數個,那么把這組數據從小到大排列后,排在中間位置的兩個數的平均數是這組數據的中位數.一組數據中出現次數最多的數是這組數據的眾數.15、x1=1,x2=-.【解析】試題解析:3x(x-1)=2(x-1)3x(x-1)-2(x-1)=0(3x-2)(x-1)=03x-2=0,x-1=0解得:x1=1,x2=-.考點:解一元二次方程---因式分解法.16、.【解析】試題分析:根據翻轉變換的性質得到∠AFE=∠D=90°,AF=AD=5,根據矩形的性質得到∠EFC=∠BAF,根據余弦的概念計算即可.由翻轉變換的性質可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案為:.考點:軸對稱的性質,矩形的性質,余弦的概念.17、a≤且a≠1.【解析】
根據一元二次方程有實數根的條件列出關于a的不等式組,求出a的取值范圍即可.【詳解】由題意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案為a≤且a≠1.點睛:本題考查的是根的判別式及一元二次方程的定義,根據題意列出關于a的不等式組是解答此題的關鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2).【解析】(2)易證∠APD=∠B=∠C,從而可證到△ABP∽△PCD,即可得到,即AB?CD=CP?BP,由AB=AC即可得到AC?CD=CP?BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,從而可證到△BAP∽△BCA,然后運用相似三角形的性質即可求出BP的長.解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴,∴AB?CD=CP?BP.∵AB=AC,∴AC?CD=CP?BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴.∵AB=10,BC=12,∴,∴BP=.“點睛”本題主要考查了相似三角形的判定與性質、等腰三角形的性質、平行線的性質、三角形外角的性質等知識,把證明AC?CD=CP?BP轉化為證明AB?CD=CP?BP是解決第(1)小題的關鍵,證到∠BAP=∠C進而得到△BAP∽△BCA是解決第(2)小題的關鍵.19、(1)y=﹣310x2+1110x+2;(2)y=2x+2;(3)①線段BP與線段AE的關系是相互垂直;②點P的坐標為:(﹣4+23,﹣8+43)或(﹣4﹣23,﹣8﹣43)或(0,﹣4)或(﹣【解析】
(1)將A(5,0)和點B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;(2)C點坐標為(0,2),把點B、C的坐標代入直線方程y=kx+b即可求解;(3)①AE直線的斜率kAE=2,而直線BC斜率的kAE=2即可求解;②考慮當P點在線段BC上時和在線段BE上時兩種情況,利用PM′=PM即可求解.【詳解】(1)將A(5,0)和點B(﹣3,﹣4)代入y=ax2+bx+2,解得:a=﹣,b=,故函數的表達式為y=﹣x2+x+2;(2)C點坐標為(0,2),把點B、C的坐標代入直線方程y=kx+b,解得:k=2,b=2,故:直線BC的函數表達式為y=2x+2,(3)①E是點B關于y軸的對稱點,E坐標為(3,﹣4),則AE直線的斜率kAE=2,而直線BC斜率的kAE=2,∴AE∥BC,而EP⊥BC,∴BP⊥AE而BP=AE,∴線段BP與線段AE的關系是相互垂直;②設點P的橫坐標為m,當P點在線段BC上時,P坐標為(m,2m+2),M坐標為(m,2),則PM=2m,直線MM′⊥BC,∴kMM′=﹣,直線MM′的方程為:y=﹣x+(2+m),則M′坐標為(0,2+m)或(4+m,0),由題意得:PM′=PM=2m,PM′2=42+m2=(2m)2,此式不成立,或PM′2=m2+(2m+2)2=(2m)2,解得:m=﹣4±2,故點P的坐標為(﹣4±2,﹣8±4);當P點在線段BE上時,點P坐標為(m,﹣4),點M坐標為(m,2),則PM=6,直線MM′的方程不變,為y=﹣x+(2+m),則M′坐標為(0,2+m)或(4+m,0),PM′2=m2+(6+m)2=(2m)2,解得:m=0,或﹣;或PM′2=42+42=(6)2,無解;故點P的坐標為(0,﹣4)或(﹣,﹣4);綜上所述:點P的坐標為:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).主要考查了二次函數的解析式的求法和與幾何圖形結合的綜合能力的培養.要會利用數形結合的思想把代數和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.20、涼亭P到公路l的距離為273.2m.【解析】
分析:作PD⊥AB于D,構造出Rt△APD與Rt△BPD,根據AB的長度.利用特殊角的三角函數值求解.【詳解】詳解:作PD⊥AB于D.設BD=x,則AD=x+1.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴PD=tan30°?AD,即DB=PD=tan30°?AD=x=(1+x),解得:x≈273.2,∴PD=273.2.答:涼亭P到公路l的距離為273.2m.此題考查的是直角三角形的性質,解答此題的關鍵是構造出兩個特殊角度的直角三角形,再利用特殊角的三角函數值解答.21、(1)①y=-x2-4x-3;y=x;②t=或;(2)證明見解析.【解析】
(1)把A(-3,0),B(-1,0)代入二次函數解析式即可求出;由AC=OA知C點坐標為(-3,-3),故可求出直線OC的解析式;②由題意得OP=2t,P(-2t,0),過Q作QH⊥x軸于H,得OH=HQ=t,可得Q(-t,-t),直線PQ為y=-x-2t,過M作MG⊥x軸于G,由,則2PG=GH,由,得,于是,解得,從而求出M(-3t,t)或M(),再分情況計算即可;(2)過F作FH⊥x軸于H,想辦法證得tan∠CAG=tan∠FBH,即∠CAG=∠FBH,即得證.【詳解】解:(1)①把A(-3,0),B(-1,0)代入二次函數解析式得解得∴y=-x2-4x-3;由AC=OA知C點坐標為(-3,-3),∴直線OC的解析式y=x;②OP=2t,P(-2t,0),過Q作QH⊥x軸于H,∵QO=,∴OH=HQ=t,∴Q(-t,-t),∴PQ:y=-x-2t,過M作MG⊥x軸于G,∴,∴2PG=GH∴,即,∴,∴,∴M(-3t,t)或M()當M(-3t,t)時:,∴當M()時:,∴綜上:或(2)設A(m,0)、B(n,0),∴m、n為方程x2-bx-c=0的兩根,∴m+n=b,mn=-c,∴y=-x2+(m+n)x-mn=-(x-m)(x-n),∵E、F在拋物線上,設、,設EF:y=kx+b,∴,∴∴∴,令x=m∴=∴AC=,又∵,∴tan∠CAG=,另一方面:過F作FH⊥x軸于H,∴,,∴tan∠FBH=∴tan∠CAG=tan∠FBH∴∠CAG=∠FBH∴CG∥BF此題主要考查二次函數的綜合問題,解題的關鍵是熟知相似三角形的判定與性質及正確作出輔助線進行求解.22、(1)如圖所示見解析,(2)當半徑為6時,該正六邊形的面積為【解析】試題分析:(1)先畫一半徑為a的圓,再作所畫圓的六等分點,如圖所示,連接所得六等分點,作出兩個等邊三角形即可;(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點E,由已知條件先求出AB和OE的長,再求出CD的長,即可求得△OCD的面積,這樣即可由S陰影=6S△OCD求出陰影部分的面積了.試題解析:(1)所作圖形如下圖所示:(2)如下圖,連接OA、OB、OC、OD,作OE⊥AB于點E,則由題意可得:OA=OB=6,∠AOB=120°,∠OEB=90°,AE=BE,△BOC,△AOD都是等腰三角形,△OCD的三邊三角形,∴∠ABO=30°,BC=OC=CD=AD,∴BE=OB·cos30°=,OE=3,∴AB=,∴CD=,∴S△OCD=,∴S陰影=6S△OCD=.23、(1)證明見解析;(2)DE=CE,理由見解析;(3).【解析】試題分析:(1)證明△ABE∽△ACD,從而得出結論;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 襄陽職業技術學院《英語:聽力》2023-2024學年第二學期期末試卷
- 西安建筑科技大學《鏡前表演及實踐》2023-2024學年第二學期期末試卷
- 浙江省杭州下城區重點達標名校2024-2025學年初三1月份階段模擬測試語文試題試卷含解析
- 江西航空職業技術學院《Python語言程序設計Ⅱ》2023-2024學年第二學期期末試卷
- 南充職業技術學院《中國地理(二)》2023-2024學年第二學期期末試卷
- 寧夏大學《孫冶方經濟科學獎與中國經濟發展》2023-2024學年第二學期期末試卷
- 昆山杜克大學《日語筆譯》2023-2024學年第二學期期末試卷
- 重慶工貿職業技術學院《生物工程專業實驗(一)》2023-2024學年第二學期期末試卷
- 吉林省松原市乾安縣七中2025屆普通高中畢業班3月質量檢查英語試題含解析
- 浙江省紹興實驗學校2025年初三英語試題第三次質量檢測試題試卷含答案
- 應急物資倉庫管理制度(4篇)
- 2024-2030年中國高壓變頻器行業現狀分析及前景趨勢調研報告
- 2024年度中國船員心理健康報告
- 《地源熱泵介紹》課件
- 5以內數的守恒-課件
- 2024年第四屆全國工業設計職業技能大賽決賽包裝設計師理論考試題庫(含答案)
- 2023年高考真題-政治(福建卷) 含答案
- 幼兒園小班認識小動物課件
- 熱敏灸課件完整版本
- 體育概論(第二版)課件第五章體育手段
- 計算機組裝與維護
評論
0/150
提交評論