




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省西安新城區七校聯考2025年初三下學期第二次聯合考試數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.已知點A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函數y=的圖象上,則y1、y2、y3的大小關系是()A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y22.下列計算正確的是()A.x+x=x2B.x·x=2xC.(3.如圖,△ABC為鈍角三角形,將△ABC繞點A按逆時針方向旋轉120°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數為()A.45° B.60° C.70° D.90°4.如圖,點O′在第一象限,⊙O′與x軸相切于H點,與y軸相交于A(0,2),B(0,8),則點O′的坐標是()A.(6,4) B.(4,6) C.(5,4) D.(4,5)5.如圖,在平面直角坐標系中,線段AB的端點坐標為A(-2,4),B(4,2),直線y=kx-2與線段AB有交點,則K的值不可能是()A.-5 B.-2 C.3 D.56.在實數,有理數有()A.1個 B.2個 C.3個 D.4個7.在0,﹣2,3,四個數中,最小的數是()A.0 B.﹣2 C.3 D.8.若△÷,則“△”可能是()A. B. C. D.9.如圖,AB∥CD,DE⊥BE,BF、DF分別為∠ABE、∠CDE的角平分線,則∠BFD=()A.110° B.120° C.125° D.135°10.下列說法中,正確的個數共有()(1)一個三角形只有一個外接圓;(2)圓既是軸對稱圖形,又是中心對稱圖形;(3)在同圓中,相等的圓心角所對的弧相等;(4)三角形的內心到該三角形三個頂點距離相等;A.1個B.2個C.3個D.4個二、填空題(本大題共6個小題,每小題3分,共18分)11.若式子有意義,則x的取值范圍是_____________.12.若代數式的值不小于代數式的值,則x的取值范圍是_____.13.如圖,等邊三角形ABC內接于⊙O,若⊙O的半徑為2,則圖中陰影部分的面積等于_______.14.請寫出一個比2大且比4小的無理數:________.15.圓錐的底面半徑為6㎝,母線長為10㎝,則圓錐的側面積為______cm216.如圖,正方形ABCD的邊長為2,分別以A、D為圓心,2為半徑畫弧BD、AC,則圖中陰影部分的面積為_____.三、解答題(共8題,共72分)17.(8分)正方形ABCD的邊長是10,點E是AB的中點,動點F在邊BC上,且不與點B、C重合,將△EBF沿EF折疊,得到△EB′F.(1)如圖1,連接AB′.①若△AEB′為等邊三角形,則∠BEF等于多少度.②在運動過程中,線段AB′與EF有何位置關系?請證明你的結論.(2)如圖2,連接CB′,求△CB′F周長的最小值.(3)如圖3,連接并延長BB′,交AC于點P,當BB′=6時,求PB′的長度.18.(8分)計算:2sin30°﹣|1﹣|+()﹣119.(8分)為改善生態環境,防止水土流失,某村計劃在荒坡上種1000棵樹.由于青年志愿者的支援,每天比原計劃多種25%,結果提前5天完成任務,原計劃每天種多少棵樹?20.(8分)為了解某校九年級男生的體能情況,體育老師隨機抽取部分男生進行引體向上測試,并對成績進行了統計,繪制出如下的統計圖①和圖②,請跟進相關信息,解答下列問題:(1)本次抽測的男生人數為,圖①中m的值為;(2)求本次抽測的這組數據的平均數、眾數和中位數;(3)若規定引體向上5次以上(含5次)為體能達標,根據樣本數據,估計該校350名九年級男生中有多少人體能達標.21.(8分)(1)計算:2﹣2﹣+(1﹣)0+2sin60°.(2)先化簡,再求值:()÷,其中x=﹣1.22.(10分)如圖,拋物線與x軸交于點A,B,與軸交于點C,過點C作CD∥x軸,交拋物線的對稱軸于點D,連結BD,已知點A坐標為(-1,0).求該拋物線的解析式;求梯形COBD的面積.23.(12分)如圖,已知拋物線y=ax2+2x+8與x軸交于A,B兩點,與y軸交于點C,且B(4,0).(1)求拋物線的解析式及其頂點D的坐標;(2)如果點P(p,0)是x軸上的一個動點,則當|PC﹣PD|取得最大值時,求p的值;(3)能否在拋物線第一象限的圖象上找到一點Q,使△QBC的面積最大,若能,請求出點Q的坐標;若不能,請說明理由.24.如圖,某大樓的頂部豎有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的傾斜角∠BAH=30°,AB=20米,AB=30米.(1)求點B距水平面AE的高度BH;(2)求廣告牌CD的高度.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
分別把各點代入反比例函數的解析式,求出y1,y2,y3的值,再比較出其大小即可.【詳解】∵點A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函數y=的圖象上,∴y1==6,y2==3,y3==-2,∵﹣2<3<6,∴y3<y2<y1,故選B.本題考查了反比例函數圖象上點的坐標特征,反比例函數值的大小比較,熟練掌握反比例函數圖象上的點的坐標滿足函數的解析式是解題的關鍵.2、D【解析】分析:根據合并同類項、同底數冪的乘法、冪的乘方、同底數冪的除法的運算法則計算即可.解答:解:A、x+x=2x,選項錯誤;B、x?x=x2,選項錯誤;C、(x2)3=x6,選項錯誤;D、正確.故選D.3、D【解析】已知△ABC繞點A按逆時針方向旋轉l20°得到△AB′C′,根據旋轉的性質可得∠BAB′=∠CAC′=120°,AB=AB′,根據等腰三角形的性質和三角形的內角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故選D.4、D【解析】
過O'作O'C⊥AB于點C,過O'作O'D⊥x軸于點D,由切線的性質可求得O'D的長,則可得O'B的長,由垂徑定理可求得CB的長,在Rt△O'BC中,由勾股定理可求得O'C的長,從而可求得O'點坐標.【詳解】如圖,過O′作O′C⊥AB于點C,過O′作O′D⊥x軸于點D,連接O′B,∵O′為圓心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8?2=6,∴AC=BC=3,∴OC=8?3=5,∵⊙O′與x軸相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C===4,∴P點坐標為(4,5),故選:D.本題考查了切線的性質,坐標與圖形性質,解題的關鍵是掌握切線的性質和坐標計算.5、B【解析】
當直線y=kx-2與線段AB的交點為A點時,把A(-2,4)代入y=kx-2,求出k=-3,根據一次函數的有關性質得到當k≤-3時直線y=kx-2與線段AB有交點;當直線y=kx-2與線段AB的交點為B點時,把B(4,2)代入y=kx-2,求出k=1,根據一次函數的有關性質得到當k≥1時直線y=kx-2與線段AB有交點,從而能得到正確選項.【詳解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴當直線y=kx-2與線段AB有交點,且過第二、四象限時,k滿足的條件為k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴當直線y=kx-2與線段AB有交點,且過第一、三象限時,k滿足的條件為k≥1.即k≤-3或k≥1.所以直線y=kx-2與線段AB有交點,則k的值不可能是-2.故選B.本題考查了一次函數y=kx+b(k≠0)的性質:當k>0時,圖象必過第一、三象限,k越大直線越靠近y軸;當k<0時,圖象必過第二、四象限,k越小直線越靠近y軸.6、D【解析】試題分析:根據有理數是有限小數或無限循環小數,可得答案:是有理數,故選D.考點:有理數.7、B【解析】
根據實數比較大小的法則進行比較即可.【詳解】∵在這四個數中3>0,>0,-2<0,∴-2最?。蔬xB.本題考查的是實數的大小比較,即正實數都大于0,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小.8、A【解析】
直接利用分式的乘除運算法則計算得出答案.【詳解】。故選:A.考查了分式的乘除運算,正確分解因式再化簡是解題關鍵.9、D【解析】
如圖所示,過E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分別為∠ABE,∠CDE的角平分線,∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故選D.本題主要考查了平行線的性質以及角平分線的定義的運用,解題時注意:兩直線平行,同旁內角互補.解決問題的關鍵是作平行線.10、C【解析】
根據外接圓的性質,圓的對稱性,三角形的內心以及圓周角定理即可解出.【詳解】(1)一個三角形只有一個外接圓,正確;(2)圓既是軸對稱圖形,又是中心對稱圖形,正確;(3)在同圓中,相等的圓心角所對的弧相等,正確;(4)三角形的內心是三個內角平分線的交點,到三邊的距離相等,錯誤;故選:C.此題考查了外接圓的性質,三角形的內心及軸對稱和中心對稱的概念,要求學生對這些概念熟練掌握.二、填空題(本大題共6個小題,每小題3分,共18分)11、x<【解析】由題意得:1﹣2x>0,解得:,故答案為.12、x≥【解析】
根據題意列出不等式,依據解不等式得基本步驟求解可得.【詳解】解:根據題意,得:,6(3x﹣1)≥5(1﹣5x),18x﹣6≥5﹣25x,18x+25x≥5+6,43x≥11,x≥,故答案為x≥.本題主要考查解不等式得基本技能,熟練掌握解一元一次不等式的基本步驟是解題的關鍵.13、【解析】
分析:題圖中陰影部分為弓形與三角形的和,因此求出扇形AOC的面積即可,所以關鍵是求圓心角的度數.本題考查組合圖形的求法.扇形面積公式等.詳解:連結OC,∵△ABC為正三角形,∴∠AOC==120°,∵,∴圖中陰影部分的面積等于∴S扇形AOC=即S陰影=cm2.故答案為.點睛:本題考查了等邊三角形性質,扇形的面積,三角形的面積等知識點的應用,關鍵是求出∠AOC的度數,主要考查學生綜合運用定理進行推理和計算的能力.14、(或)【解析】
利用完全平方數和算術平方根對無理數的大小進行估算,然后找出無理數即可【詳解】設無理數為,,所以x的取值在4~16之間都可,故可填本題考查估算無理數的大小,能夠判斷出中間數的取值范圍是解題關鍵15、60π【解析】
圓錐的側面積=π×底面半徑×母線長,把相應數值代入即可求解.解:圓錐的側面積=π×6×10=60πcm1.16、2﹣【解析】
過點F作FE⊥AD于點E,則AE=AD=AF,故∠AFE=∠BAF=30°,再根據勾股定理求出EF的長,由S弓形AF=S扇形ADF-S△ADF可得出其面積,再根據S陰影=2(S扇形BAF-S弓形AF)即可得出結論【詳解】如圖所示,過點F作FE⊥AD于點E,∵正方形ABCD的邊長為2,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF-S△ADF=,∴S陰影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.本題考查了扇形的面積公式和長方形性質的應用,關鍵是根據圖形的對稱性分析,主要考查學生的計算能力.三、解答題(共8題,共72分)17、(1)①∠BEF=60°;②AB'∥EF,證明見解析;(2)△CB′F周長的最小值5+5;(3)PB′=.【解析】
(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°;②依據AE=B′E,可得∠EAB′=∠EB′A,再根據∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,進而得出EF∥AB′;(2)由折疊可得,CF+B′F=CF+BF=BC=10,依據B′E+B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,進而得到B′C最小值為5﹣5,故△CB′F周長的最小值=10+5﹣5=5+5;(3)將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,設PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.依據∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的長度.【詳解】(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°,故答案為60;②AB′∥EF,證明:∵點E是AB的中點,∴AE=BE,由折疊可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF∥AB′;(2)如圖,點B′的軌跡為半圓,由折疊可得,BF=B′F,∴CF+B′F=CF+BF=BC=10,∵B′E+B′C≥CE,∴B′C≥CE﹣B′E=5﹣5,∴B′C最小值為5﹣5,∴△CB′F周長的最小值=10+5﹣5=5+5;(3)如圖,連接AB′,易得∠AB′B=90°,將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,由AB=10,BB′=6,可得AB′=8,∴QM=QN=AB′=8,設PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.∵∠BQP=90°,∴22+(8﹣x)2=(6+x)2,解得:x=,∴PB′=x=.本題屬于四邊形綜合題,主要考查了折疊的性質,等邊三角形的性質,正方形的判定與性質以及勾股定理的綜合運用,解題的關鍵是設要求的線段長為x,然后根據折疊和軸對稱的性質用含x的代數式表示其他線段的長度,選擇適當的直角三角形,運用勾股定理列出方程求出答案.18、4﹣【解析】
原式利用絕對值的代數意義,特殊角的三角函數值,負整數指數冪的法則計算即可.【詳解】原式=2×﹣(﹣1)+2=1﹣+1+2=4﹣.本題考查了實數的運算,熟練掌握運算法則是解本題的關鍵.19、原計劃每天種樹40棵.【解析】
設原計劃每天種樹x棵,實際每天植樹(1+25%)x棵,根據實際完成的天數比計劃少5天為等量關系建立方程求出其解即可.【詳解】設原計劃每天種樹x棵,實際每天植樹(1+25%)x棵,由題意,得?=5,解得:x=40,經檢驗,x=40是原方程的解.答:原計劃每天種樹40棵.20、(1)50、1;(2)平均數為5.16次,眾數為5次,中位數為5次;(3)估計該校350名九年級男生中有2人體能達標.【解析】分析:(Ⅰ)根據4次的人數及其百分比可得總人數,用6次的人數除以總人數求得m即可;(Ⅱ)根據平均數、眾數、中位數的定義求解可得;(Ⅲ)總人數乘以樣本中5、6、7次人數之和占被調查人數的比例可得.詳解:(Ⅰ)本次抽測的男生人數為10÷20%=50,m%=×100%=1%,所以m=1.故答案為50、1;(Ⅱ)平均數為=5.16次,眾數為5次,中位數為=5次;(Ⅲ)×350=2.答:估計該校350名九年級男生中有2人體能達標.點睛:本題考查了條形統計圖,讀懂統計圖,從統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據.21、(1)(2)【解析】
(1)根據負整數指數冪、二次根式、零指數冪和特殊角的三角函數值可以解答本題;(2)根據分式的減法和除法可以化簡題目中的式子,然后將x的值代入化簡后的式子即可解答本題.【詳解】解:(1)原式=﹣+1+2=﹣+1+=﹣;(2)原式====,當x=﹣1時,原式==.本題考查分式的化簡求值、絕對值、零指數冪、負整數指數冪和特殊角的三角函數值,解答本題的關鍵是明確它們各自的計算方法.22、(1)(2)【解析】
(1)將A坐標代入拋物線解析式,求出a的值,即可確定出解析式.(2)拋物線解析式令x=0求出y的值,求出OC的長,根據對稱軸求出CD的長,令y=0求出x的值,確定出OB的長,根據梯形面積公式即可求出梯形COBD的面積.【詳解】(1)將A(―1,0)代入中,得:0=4a+4,解得:a=-1.∴該拋物線解析式為.(2)對于拋物線解析式,令x=0,得到y=2,即OC=2,∵拋物線的對稱軸為直線x=1,∴CD=1.∵A(-1,0),∴B(2,0),即OB=2.∴.23、(1)y=﹣(x﹣1)2+9,D(1,9);(2)p=﹣1;(3)存在點Q(2,1)使△QBC的面積最大.【解析】分析:(1)把點B的坐標代入y=ax2+2x+1求得a的值,即可得到該拋物線的解析式,再把所得解析式配方化為頂點式,即可得到拋物線頂點D的坐標;(2)由題意可知點P在直線CD上時,|PC﹣PD|取得最大值,因此,求得點C的坐標,再求出直CD的解析式,即可求得符合條件的點P的坐標,從而得到p的值;(3)由(1)中所得拋物線的解析式設點Q的坐標為(m,﹣m2+2m+1)(0<m<4),然后用含m的代數式表達出△BCQ的面積,并將所得表達式配方化為頂點式即可求得對應點Q的坐標.詳解:(1)∵拋物線y=ax2+2x+1經過點B(4,0),∴16a+1+1=0,∴a=﹣1,∴拋物線的解析式為y=﹣x2+2x+1=﹣(x﹣1)2+9,∴D(1,9);(2)∵當x=0時,y=1,∴C(0,1).設直線CD的解析式為y=kx+b.將點C、D的坐標代入得:,解得:k=1,b=1,∴直線CD的解析式為y=x+1.當y=0時,x+1=0,解得:x=﹣1,∴直線CD與x軸的交點坐標為(﹣1,0).∵當P在直線CD上時,|PC﹣PD|取得最大值,∴p=﹣1;(3)存在,理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論