江蘇省宜興市丁蜀區瀆邊聯盟重點名校2024-2025學年初三第一次十校聯考數學試題含解析_第1頁
江蘇省宜興市丁蜀區瀆邊聯盟重點名校2024-2025學年初三第一次十校聯考數學試題含解析_第2頁
江蘇省宜興市丁蜀區瀆邊聯盟重點名校2024-2025學年初三第一次十校聯考數學試題含解析_第3頁
江蘇省宜興市丁蜀區瀆邊聯盟重點名校2024-2025學年初三第一次十校聯考數學試題含解析_第4頁
江蘇省宜興市丁蜀區瀆邊聯盟重點名校2024-2025學年初三第一次十校聯考數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省宜興市丁蜀區瀆邊聯盟重點名校2024-2025學年初三第一次十校聯考數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.的相反數是()A. B. C.3 D.-32.不等式5+2x<1的解集在數軸上表示正確的是().A. B. C. D.3.如圖是本地區一種產品30天的銷售圖象,圖①是產品日銷售量y(單位:件)與時間t(單位;天)的函數關系,圖②是一件產品的銷售利潤z(單位:元)與時間t(單位:天)的函數關系,已知日銷售利潤=日銷售量×一件產品的銷售利潤,下列結論錯誤的是()A.第24天的銷售量為200件 B.第10天銷售一件產品的利潤是15元C.第12天與第30天這兩天的日銷售利潤相等 D.第27天的日銷售利潤是875元4.由6個大小相同的正方體搭成的幾何體如圖所示,比較它的正視圖、左視圖和俯視圖的面積,則()A.三個視圖的面積一樣大 B.主視圖的面積最小C.左視圖的面積最小 D.俯視圖的面積最小5.已知點M(-2,3)在雙曲線上,則下列一定在該雙曲線上的是()A.(3,-2) B.(-2,-3) C.(2,3) D.(3,2)6.小明將某圓錐形的冰淇淋紙套沿它的一條母線展開若不考慮接縫,它是一個半徑為12cm,圓心角為的扇形,則A.圓錐形冰淇淋紙套的底面半徑為4cmB.圓錐形冰淇淋紙套的底面半徑為6cmC.圓錐形冰淇淋紙套的高為D.圓錐形冰淇淋紙套的高為7.的相反數是A.4 B. C. D.8.已知,用尺規作圖的方法在上確定一點,使,則符合要求的作圖痕跡是()A. B.C. D.9.如圖,已知菱形ABCD,∠B=60°,AB=4,則以AC為邊長的正方形ACEF的周長為()A.16 B.12 C.24 D.1810.如圖,等邊三角形ABC的邊長為3,N為AC的三等分點,三角形邊上的動點M從點A出發,沿A→B→C的方向運動,到達點C時停止.設點M運動的路程為x,MN2=y,則y關于x的函數圖象大致為A.B.C.D.11.甲、乙兩人沿相同的路線由A地到B地勻速前進,A、B兩地間的路程為40km.他們前進的路程為s(km),甲出發后的時間為t(h),甲、乙前進的路程與時間的函數圖象如圖所示.根據圖象信息,下列說法不正確的是()A.甲的速度是10km/h B.乙的速度是20km/hC.乙出發h后與甲相遇 D.甲比乙晚到B地2h12.一個幾何體的俯視圖如圖所示,其中的數字表示該位置上小正方體的個數,那么這個幾何體的主視圖是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若不等式組的解集是﹣1<x≤1,則a=_____,b=_____.14.如圖,在平面直角坐標系中有矩形ABCD,A(0,0),C(8,6),M為邊CD上一動點,當△ABM是等腰三角形時,M點的坐標為_____.15.若一元二次方程有兩個不相等的實數根,則k的取值范圍是.16.計算5個數據的方差時,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],則的值為_____.17.如圖,D,E分別是△ABC的邊AB、BC上的點,且DE∥AC,AE、CD相交于點O,若S△DOE:S△COA=1:16,則S△BDE與S△CDE的比是___________.18.已知關于x的方程x2﹣2x﹣m=0沒有實數根,那么m的取值范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)光華農機租賃公司共有50臺聯合收割機,其中甲型20臺,乙型30臺,先將這50臺聯合收割機派往A、B兩地區收割小麥,其中30臺派往A地區,20臺派往B地區.兩地區與該農機租賃公司商定的每天的租賃價格見表:每臺甲型收割機的租金每臺乙型收割機的租金A地區18001600B地區16001200(1)設派往A地區x臺乙型聯合收割機,租賃公司這50臺聯合收割機一天獲得的租金為y(元),求y與x間的函數關系式,并寫出x的取值范圍;(2)若使農機租賃公司這50臺聯合收割機一天獲得的租金總額不低于79600元,說明有多少種分配方案,并將各種方案設計出來;(3)如果要使這50臺聯合收割機每天獲得的租金最高,請你為光華農機租賃公司提一條合理化建議.20.(6分)已知平行四邊形.尺規作圖:作的平分線交直線于點,交延長線于點(要求:尺規作圖,保留作圖痕跡,不寫作法);在(1)的條件下,求證:.21.(6分)如圖,△ABD是⊙O的內接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.求證:BC是⊙O的切線;若⊙O的半徑為6,BC=8,求弦BD的長.22.(8分)為上標保障我國海外維和部隊官兵的生活,現需通過A港口、B港口分別運送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運送物資到港口的費用(元/噸)如表所示:設從甲倉庫運送到A港口的物資為x噸,求總運費y(元)與x(噸)之間的函數關系式,并寫出x的取值范圍;求出最低費用,并說明費用最低時的調配方案.23.(8分)已知關于的二次函數(1)當時,求該函數圖像的頂點坐標.(2)在(1)條件下,為該函數圖像上的一點,若關于原點的對稱點也落在該函數圖像上,求的值(3)當函數的圖像經過點(1,0)時,若是該函數圖像上的兩點,試比較與的大小.24.(10分)已知關于x的方程x1+(1k﹣1)x+k1﹣1=0有兩個實數根x1,x1.求實數k的取值范圍;若x1,x1滿足x11+x11=16+x1x1,求實數k的值.25.(10分)一次函數y=34x的圖象如圖所示,它與二次函數y=ax2(1)求點C的坐標;(2)設二次函數圖象的頂點為D.①若點D與點C關于x軸對稱,且△ACD的面積等于3,求此二次函數的關系式;②若CD=AC,且△ACD的面積等于10,求此二次函數的關系式.26.(12分)如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.(1)觀察猜想圖1中,線段PM與PN的數量關系是,位置關系是;(2)探究證明把△ADE繞點A逆時針方向旋轉到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;(3)拓展延伸把△ADE繞點A在平面內自由旋轉,若AD=4,AB=10,請直接寫出△PMN面積的最大值.27.(12分)如圖,已知與拋物線C1過A(-1,0)、B(3,0)、C(0,-3).(1)求拋物線C1的解析式.(2)設拋物線的對稱軸與x軸交于點P,D為第四象限內的一點,若△CPD為等腰直角三角形,求出D點坐標.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】先求的絕對值,再求其相反數:根據數軸上某個數與原點的距離叫做這個數的絕對值的定義,在數軸上,點到原點的距離是,所以的絕對值是;相反數的定義是:如果兩個數只有符號不同,我們稱其中一個數為另一個數的相反數,特別地,1的相反數還是1.因此的相反數是.故選B.2、C【解析】

先解不等式得到x<-1,根據數軸表示數的方法得到解集在-1的左邊.【詳解】5+1x<1,移項得1x<-4,系數化為1得x<-1.故選C.本題考查了在數軸上表示不等式的解集:先求出不等式組的解集,然后根據數軸表示數的方法把對應的未知數的取值范圍通過畫區間的方法表示出來,等號時用實心,不等時用空心.3、C【解析】試題解析:A、根據圖①可得第24天的銷售量為200件,故正確;B、設當0≤t≤20,一件產品的銷售利潤z(單位:元)與時間t(單位:天)的函數關系為z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=-x+25,當x=10時,y=-10+25=15,故正確;C、當0≤t≤24時,設產品日銷售量y(單位:件)與時間t(單位;天)的函數關系為y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=t+100,當t=12時,y=150,z=-12+25=13,∴第12天的日銷售利潤為;150×13=1950(元),第30天的日銷售利潤為;150×5=750(元),750≠1950,故C錯誤;D、第30天的日銷售利潤為;150×5=750(元),故正確.故選C4、C【解析】試題分析:根據三視圖的意義,可知正視圖由5個面,左視圖有3個面,俯視圖有4個面,故可知主視圖的面積最大.故選C考點:三視圖5、A【解析】因為點M(-2,3)在雙曲線上,所以xy=(-2)×3=-6,四個答案中只有A符合條件.故選A6、C【解析】

根據圓錐的底面周長等于側面展開圖的扇形弧長,列出方程求出圓錐的底面半徑,再利用勾股定理求出圓錐的高.【詳解】解:半徑為12cm,圓心角為的扇形弧長是:,

設圓錐的底面半徑是rcm,

則,

解得:.

即這個圓錐形冰淇淋紙套的底面半徑是2cm.

圓錐形冰淇淋紙套的高為.

故選:C.本題綜合考查有關扇形和圓錐的相關計算解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應關系:圓錐的母線長等于側面展開圖的扇形半徑;圓錐的底面周長等于側面展開圖的扇形弧長正確對這兩個關系的記憶是解題的關鍵.7、A【解析】

直接利用相反數的定義結合絕對值的定義分析得出答案.【詳解】-1的相反數為1,則1的絕對值是1.故選A.本題考查了絕對值和相反數,正確把握相關定義是解題的關鍵.8、D【解析】試題分析:D選項中作的是AB的中垂線,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故選D.考點:作圖—復雜作圖.9、A【解析】

由菱形ABCD,∠B=60°,易證得△ABC是等邊三角形,繼而可得AC=AB=4,則可求得以AC為邊長的正方形ACEF的周長.【詳解】解:∵四邊形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等邊三角形,∴AC=AB=BC=4,∴以AC為邊長的正方形ACEF的周長為:4AC=1.故選A.本題考查了菱形的性質、正方形的性質以及等邊三角形的判定與性質.此題難度不大,注意掌握數形結合思想的應用.10、B【解析】分析:分析y隨x的變化而變化的趨勢,應用排它法求解,而不一定要通過求解析式來解決:∵等邊三角形ABC的邊長為3,N為AC的三等分點,∴AN=1。∴當點M位于點A處時,x=0,y=1。①當動點M從A點出發到AM=的過程中,y隨x的增大而減小,故排除D;②當動點M到達C點時,x=6,y=3﹣1=2,即此時y的值與點M在點A處時的值不相等,故排除A、C。故選B。11、B【解析】由圖可知,甲用4小時走完全程40km,可得速度為10km/h;乙比甲晚出發一小時,用1小時走完全程,可得速度為40km/h.故選B12、A【解析】

一一對應即可.【詳解】最左邊有一個,中間有兩個,最右邊有三個,所以選A.理解立體幾何的概念是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-2-3【解析】

先求出每個不等式的解集,再求出不等式組的解集,即可得出關于a、b的方程,求出即可.【詳解】解:由題意得:解不等式①得:x>1+a,解不等式②得:x≤不等式組的解集為:1+a<x≤不等式組的解集是﹣1<x≤1,..1+a=-1,=1,解得:a=-2,b=-3故答案為:-2,-3.本題主要考查解含參數的不等式組.14、(4,6),(8﹣27,6),(27,6).【解析】

分別取三個點作為定點,然后根據勾股定理和等腰三角形的兩個腰相等來判斷是否存在符合題意的M的坐標.【詳解】解:當M為頂點時,AB長為底=8,M在DC中點上,所以M的坐標為(4,6),當B為頂點時,AB長為腰=8,M在靠近D處,根據勾股定理可知ME=82-所以M的坐標為(8﹣27,6);當A為頂點時,AB長為腰=8,M在靠近C處,根據勾股定理可知MF=82-所以M的坐標為(27,6);綜上所述,M的坐標為(4,6),(8﹣27,6),(27,6);故答案為:(4,6),(8﹣27,6),(27,6).本題主要考查矩形的性質、坐標與圖形性質,解題關鍵是根據對等腰三角形性質的掌握和勾股定理的應用.15、:k<1.【解析】

∵一元二次方程有兩個不相等的實數根,∴△==4﹣4k>0,解得:k<1,則k的取值范圍是:k<1.故答案為k<1.16、1【解析】

根據平均數的定義計算即可.【詳解】解:故答案為1.本題主要考查平均數的求法,掌握平均數的公式是解題的關鍵.17、1:3【解析】根據相似三角形的判定,由DE∥AC,可知△DOE∽△COA,△BDE∽△BCA,然后根據相似三角形的面積比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根據同高不同底的三角形的面積可知與的比是1:3.故答案為1:3.18、m<﹣1.【解析】

根據根的判別式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【詳解】∵關于x的方程x2﹣2x﹣m=0沒有實數根,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,解得:m<﹣1,故答案為:m<﹣1.本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.當?>0時,一元二次方程有兩個不相等的實數根;當?=0時,一元二次方程有兩個相等的實數根;當?<0時,一元二次方程沒有實數根.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=200x+74000(10≤x≤30)(2)有三種分配方案,方案一:派往A地區的甲型聯合收割機2臺,乙型聯合收割機28臺,其余的全派往B地區;方案二:派往A地區的甲型聯合收割機1臺,乙型聯合收割機29臺,其余的全派往B地區;方案三:派往A地區的甲型聯合收割機0臺,乙型聯合收割機30臺,其余的全派往B地區;(3)派往A地區30臺乙型聯合收割機,20臺甲型聯合收割機全部派往B地區,使該公司50臺收割機每天獲得租金最高.【解析】

(1)根據題意和表格中的數據可以得到y關于x的函數關系式;

(2)根據題意可以得到相應的不等式,從而可以解答本題;

(3)根據(1)中的函數解析式和一次函數的性質可以解答本題.【詳解】解:(1)設派往A地區x臺乙型聯合收割機,則派往B地區x臺乙型聯合收割機為(30﹣x)臺,派往A、B地區的甲型聯合收割機分別為(30﹣x)臺和(x﹣10)臺,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30);(2)由題意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x為整數,∴x=28、29、30,∴有三種分配方案,方案一:派往A地區的甲型聯合收割機2臺,乙型聯合收割機28臺,其余的全派往B地區;方案二:派往A地區的甲型聯合收割機1臺,乙型聯合收割機29臺,其余的全派往B地區;方案三:派往A地區的甲型聯合收割機0臺,乙型聯合收割機30臺,其余的全派往B地區;(3)派往A地區30臺乙型聯合收割機,20臺甲型聯合收割機全部派往B地區,使該公司50臺收割機每天獲得租金最高,理由:∵y=200x+74000中y隨x的增大而增大,∴當x=30時,y取得最大值,此時y=80000,∴派往A地區30臺乙型聯合收割機,20臺甲型聯合收割機全部派往B地區,使該公司50臺收割機每天獲得租金最高.本題考查一次函數的性質,解題關鍵是明確題意,找出所求問題需要的條件,利用一次函數和不等式的性質解答.20、(1)見解析;(2)見解析.【解析】試題分析:(1)作∠BAD的平分線交直線BC于點E,交DC延長線于點F即可;(2)先根據平行四邊形的性質得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,據此可得出結論.試題解析:(1)如圖所示,AF即為所求;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.考點:作圖—基本作圖;平行四邊形的性質.21、(1)詳見解析;(2)BD=9.6.【解析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切線.(2)解:∵OB=6,BC=8,BC⊥OB,∴,∵,∴,∴.點睛:本題主要考查圓中的計算問題,解題的關鍵在于清楚角度的轉換方式和弦長的計算方法.22、(1)y=﹣8x+2560(30≤x≤1);(2)把甲倉庫的全部運往A港口,再從乙倉庫運20噸往A港口,乙倉庫的余下的全部運往B港口.【解析】試題分析:(1)設從甲倉庫運x噸往A港口,根據題意得從甲倉庫運往B港口的有(1﹣x)噸,從乙倉庫運往A港口的有噸,運往B港口的有50﹣(1﹣x)=(x﹣30)噸,再由等量關系:總運費=甲倉庫運往A港口的費用+甲倉庫運往B港口的費用+乙倉庫運往A港口的費用+乙倉庫運往B港口的費用列式并化簡,即可得總運費y(元)與x(噸)之間的函數關系式;由題意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因為所得的函數為一次函數,由增減性可知:y隨x增大而減少,則當x=1時,y最小,并求出最小值,寫出運輸方案.試題解析:(1)設從甲倉庫運x噸往A港口,則從甲倉庫運往B港口的有(1﹣x)噸,從乙倉庫運往A港口的有噸,運往B港口的有50﹣(1﹣x)=(x﹣30)噸,所以y=14x+20+10(1﹣x)+8(x﹣30)=﹣8x+2560,x的取值范圍是30≤x≤1.(2)由(1)得y=﹣8x+2560y隨x增大而減少,所以當x=1時總運費最小,當x=1時,y=﹣8×1+2560=1920,此時方案為:把甲倉庫的全部運往A港口,再從乙倉庫運20噸往A港口,乙倉庫的余下的全部運往B港口.考點:一次函數的應用.23、(1),頂點坐標(1,-4);(2)m=1;(3)①當a>0時,y2>y1,②當a<0時,y1>y2.【解析】試題分析:(1)把a=2,b=4代入并配方,即可求出此時二次函數圖象的頂點坐標;(2)由題意把(m,t)和(-m,-t)代入(1)中所得函數的解析式,解方程組即可求得m的值;(3)把點(1,0)代入可得b=a-2,由此可得拋物線的對稱軸為直線:,再分a>0和a<0兩種情況分別討論即可y1和y2的大小關系了.試題解析:(1)把a=2,b=4代入得:,∴此時二次函數的圖象的頂點坐標為(1,-4);(2)由題意,把(m,t)和(-m,-t)代入得:①,②,由①+②得:,解得:;(3)把點(1,0)代入得a-b-2=0,∴b=a-2,∴此時該二次函數圖象的對稱軸為直線:,①當a>0時,,,∵此時,且拋物線開口向上,∴中,點B距離對稱軸更遠,∴y1<y2;②當a<0時,,,∵此時,且拋物線開口向下,∴中,點B距離對稱軸更遠,∴y1>y2;綜上所述,當a>0時,y1<y2;當a<0時,y1>y2.點睛:在拋物線上:(1)當拋物線開口向上時,拋物線上的點到對稱軸的距離越遠,所對應的函數值就越大;(2)當拋物線開口向下時,拋物線上的點到對稱軸的距離越近,所對應的函數值就越大;24、(2)k≤;(2)-2.【解析】試題分析:(2)根據方程的系數結合根的判別式,即可得出△=﹣4k+5≥0,解之即可得出實數k的取值范圍;(2)由根與系數的關系可得x2+x2=2﹣2k、x2x2=k2﹣2,將其代入x22+x22=(x2+x2)2﹣2x2x2=26+x2x2中,解之即可得出k的值.試題解析:(2)∵關于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實數根x2,x2,∴△=(2k﹣2)2﹣4(k2﹣2)=﹣4k+5≥0,解得:k≤,∴實數k的取值范圍為k≤.(2)∵關于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實數根x2,x2,∴x2+x2=2﹣2k,x2x2=k2﹣2.∵x22+x22=(x2+x2)2﹣2x2x2=26+x2x2,∴(2﹣2k)2﹣2×(k2﹣2)=26+(k2﹣2),即k2﹣4k﹣22=0,解得:k=﹣2或k=6(不符合題意,舍去).∴實數k的值為﹣2.考點:一元二次方程根與系數的關系,根的判別式.25、(1)點C(1,32);(1)①y=38x1-32x;②y=-12x【解析】試題分析:(1)求得二次函數y=ax1-4ax+c對稱軸為直線x=1,把x=1代入y=34x求得y=32,即可得點C的坐標;(1)①根據點D與點C關于x軸對稱即可得點D的坐標,并且求得CD的長,設A(m,34m),根據S△ACD=3即可求得m的值,即求得點A的坐標,把A.D的坐標代入y=ax1-4ax+c得方程組,解得a、c的值即可得二次函數的表達式.②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=根據勾股定理用m表示出AC的長,根據△ACD的面積等于10可求得m的值,即可得A點的坐標,分兩種情況:第一種情況,若a>0,則點D在點C下方,求點D的坐標;第二種情況,若a<0,則點D在點C上方,求點D的坐標,分別把A、D的坐標代入y=ax1-4ax+c即可求得函數表達式.試題解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函數圖像的對稱軸為直線x=1.當x=1時,y=34x=32,∴C(1,(1)①∵點D與點C關于x軸對稱,∴D(1,-32設A(m,34m)(m<1),由S△ACD=3,得1由A(0,0)、D(1,-32)得解得a=38∴y=38x1-3②設A(m,34m)(m<1),過點A作AE⊥CD于E,則AE=1-m,CE=32-AC==54(1-m),∵CD=AC,∴CD=54由S△ACD=10得12×54(1-m)∴A(-1,-32若a>0,則點D在點C下方,∴D(1,-72由A(-1,-32)、D(1,-72)得解得∴y=18x1-1若a<0,則點D在點C上方,∴D(1,132由A(-1,-32)、D(1,132)得解得∴y=-12x1+1x+9考點:二次函數與一次函數的綜合題.26、(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,理由詳見解析;(3).【解析】

(1)利用三角形的中位線得出PM=CE,PN=BD,進而判斷出BD=CE,即可得出結論,再利用三角形的中位線得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出結論;(2)先判斷出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出結論;(3)方法1、先判斷出MN最大時,△PMN的面積最大,進而求出AN,AM,即可得出MN最大=AM+AN,最后用面積公式即可得出結論.方法2、先判斷出BD最大時,△PMN的面積最大,而BD最大是AB+AD=14,即可.【詳解】解:(1)∵點P,N是BC,CD的中點,∴PN∥BD,PN=BD,∵點P,M是CD,DE的中點,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論