沈陽航空職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與決策管理》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
沈陽航空職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與決策管理》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
沈陽航空職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與決策管理》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
沈陽航空職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與決策管理》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
沈陽航空職業(yè)技術(shù)學(xué)院《數(shù)據(jù)挖掘與決策管理》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁沈陽航空職業(yè)技術(shù)學(xué)院

《數(shù)據(jù)挖掘與決策管理》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在處理大量數(shù)據(jù)時(shí),為了提高數(shù)據(jù)處理效率,以下哪種數(shù)據(jù)結(jié)構(gòu)更適合快速查找和插入操作?()A.數(shù)組B.鏈表C.棧D.隊(duì)列2、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),例如分析超市購物籃中的商品組合。假設(shè)發(fā)現(xiàn)購買面包的顧客往往也會購買牛奶,這種關(guān)聯(lián)規(guī)則具有較高的支持度和置信度。這對超市的營銷策略可能有什么啟示?()A.可以將面包和牛奶放在相鄰的貨架上,方便顧客購買B.降低面包或牛奶的價(jià)格,以促進(jìn)銷售C.減少面包或牛奶的庫存,避免積壓D.這種關(guān)聯(lián)對營銷策略沒有實(shí)際意義3、假設(shè)要分析某網(wǎng)站不同頁面的訪問量分布情況,以下哪種圖表能夠直觀地展示訪問量的集中程度和離散程度?()A.直方圖B.箱線圖C.小提琴圖D.以上都不是4、在處理時(shí)間序列數(shù)據(jù)時(shí),例如股票價(jià)格的歷史數(shù)據(jù)。假設(shè)要預(yù)測未來一段時(shí)間的股票價(jià)格,以下哪種方法可能會受到數(shù)據(jù)季節(jié)性波動的較大影響?()A.移動平均法B.指數(shù)平滑法C.ARIMA模型D.隨機(jī)森林模型5、數(shù)據(jù)挖掘在發(fā)現(xiàn)隱藏模式和知識方面發(fā)揮著重要作用。假設(shè)要從大量銷售數(shù)據(jù)中挖掘潛在的客戶購買模式,以下關(guān)于數(shù)據(jù)挖掘技術(shù)選擇的描述,正確的是:()A.僅使用關(guān)聯(lián)規(guī)則挖掘,不考慮其他技術(shù)B.盲目應(yīng)用所有的數(shù)據(jù)挖掘算法,不考慮數(shù)據(jù)特點(diǎn)和業(yè)務(wù)需求C.結(jié)合聚類分析、分類算法和關(guān)聯(lián)規(guī)則挖掘等技術(shù),根據(jù)數(shù)據(jù)特點(diǎn)和問題需求選擇合適的方法D.認(rèn)為數(shù)據(jù)挖掘結(jié)果一定準(zhǔn)確,無需進(jìn)一步驗(yàn)證和解釋6、數(shù)據(jù)分析中常用的軟件有很多,其中Excel是一種廣泛使用的工具。以下關(guān)于Excel在數(shù)據(jù)分析中的作用,錯(cuò)誤的是?()A.Excel可以進(jìn)行數(shù)據(jù)的輸入、編輯和存儲B.Excel可以進(jìn)行簡單的數(shù)據(jù)分析,如計(jì)算均值、標(biāo)準(zhǔn)差等C.Excel可以制作各種類型的圖表,進(jìn)行數(shù)據(jù)可視化D.Excel可以處理大規(guī)模的數(shù)據(jù)集,適用于復(fù)雜的數(shù)據(jù)分析任務(wù)7、在進(jìn)行數(shù)據(jù)可視化時(shí),若要展示多個(gè)變量之間的相關(guān)性,以下哪種圖表較為合適?()A.熱力圖B.平行坐標(biāo)圖C.桑基圖D.以上都是8、在處理時(shí)間序列數(shù)據(jù)時(shí),如果需要預(yù)測未來多個(gè)時(shí)間點(diǎn)的值,以下哪種模型較為適用?()A.AR模型B.MA模型C.ARMA模型D.ARIMA模型9、在數(shù)據(jù)庫管理中,若要確保數(shù)據(jù)的一致性和完整性,通常會使用哪種約束?()A.主鍵約束B.外鍵約束C.唯一約束D.以上都是10、數(shù)據(jù)分析中,數(shù)據(jù)挖掘的過程包括多個(gè)步驟。以下關(guān)于數(shù)據(jù)挖掘過程的說法中,錯(cuò)誤的是?()A.數(shù)據(jù)挖掘的過程包括數(shù)據(jù)準(zhǔn)備、數(shù)據(jù)挖掘、結(jié)果解釋和評估等步驟B.數(shù)據(jù)準(zhǔn)備階段包括數(shù)據(jù)清洗、數(shù)據(jù)集成和數(shù)據(jù)轉(zhuǎn)換等工作C.數(shù)據(jù)挖掘階段可以使用多種算法和技術(shù),如決策樹、聚類、關(guān)聯(lián)規(guī)則挖掘等D.數(shù)據(jù)挖掘的結(jié)果不需要進(jìn)行解釋和評估,直接應(yīng)用于實(shí)際問題即可11、在處理大數(shù)據(jù)時(shí),分布式計(jì)算框架發(fā)揮了重要作用。以下關(guān)于分布式計(jì)算框架的描述,正確的是:()A.Hadoop僅適用于數(shù)據(jù)存儲,不支持?jǐn)?shù)據(jù)處理B.Spark相比Hadoop,在迭代計(jì)算方面性能更優(yōu)C.分布式計(jì)算框架可以解決數(shù)據(jù)的一致性問題,但無法提高計(jì)算效率D.分布式計(jì)算框架中的節(jié)點(diǎn)之間不需要進(jìn)行通信和協(xié)調(diào)12、在進(jìn)行數(shù)據(jù)分析時(shí),需要考慮數(shù)據(jù)的時(shí)效性和動態(tài)性。假設(shè)要分析實(shí)時(shí)的交通流量數(shù)據(jù),以優(yōu)化交通信號燈控制策略。以下哪種數(shù)據(jù)分析方法在處理這種實(shí)時(shí)動態(tài)數(shù)據(jù)時(shí)更能及時(shí)提供有效的決策支持?()A.流數(shù)據(jù)分析B.批量數(shù)據(jù)分析C.離線數(shù)據(jù)分析D.以上方法效果相同13、數(shù)據(jù)分析中的模型融合可以結(jié)合多個(gè)模型的優(yōu)勢提高性能。假設(shè)已經(jīng)建立了多個(gè)不同的預(yù)測模型,如線性回歸、決策樹和隨機(jī)森林,要將它們?nèi)诤弦垣@得更準(zhǔn)確的預(yù)測結(jié)果。以下哪種模型融合策略在這種情況下更有可能提高預(yù)測精度?()A.簡單平均融合B.加權(quán)平均融合C.基于投票的融合D.以上方法效果相同14、在對一家制造業(yè)企業(yè)的生產(chǎn)數(shù)據(jù)進(jìn)行分析,例如原材料采購、生產(chǎn)流程、產(chǎn)品質(zhì)量等,以優(yōu)化生產(chǎn)過程和降低成本。以下哪種數(shù)據(jù)分析工具可能最適合處理大規(guī)模的工業(yè)數(shù)據(jù)?()A.ExcelB.PythonC.SPSSD.SQL15、數(shù)據(jù)挖掘技術(shù)在發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和關(guān)系方面發(fā)揮著重要作用。假設(shè)我們要從電商網(wǎng)站的用戶購買記錄中挖掘用戶的購買行為模式。以下關(guān)于數(shù)據(jù)挖掘的描述,哪一項(xiàng)是不正確的?()A.關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)不同商品之間的關(guān)聯(lián)關(guān)系,幫助進(jìn)行商品推薦B.分類算法能夠根據(jù)已知的類別標(biāo)簽對新的數(shù)據(jù)進(jìn)行分類預(yù)測C.聚類分析將數(shù)據(jù)分為不同的組,但這些組必須事先定義好D.數(shù)據(jù)挖掘需要大量的數(shù)據(jù)和計(jì)算資源,同時(shí)結(jié)果需要進(jìn)一步的分析和驗(yàn)證二、簡答題(本大題共3個(gè)小題,共15分)1、(本題5分)簡述數(shù)據(jù)分析師在項(xiàng)目中的風(fēng)險(xiǎn)管理,包括識別風(fēng)險(xiǎn)、評估風(fēng)險(xiǎn)影響、制定應(yīng)對策略等,并舉例說明可能的風(fēng)險(xiǎn)和應(yīng)對方法。2、(本題5分)說明在數(shù)據(jù)分析中如何進(jìn)行數(shù)據(jù)的質(zhì)量監(jiān)控和預(yù)警?請闡述監(jiān)控的指標(biāo)、方法和預(yù)警機(jī)制,并舉例說明在生產(chǎn)數(shù)據(jù)中的應(yīng)用。3、(本題5分)描述在數(shù)據(jù)分析中,如何進(jìn)行模型的部署和上線,包括模型的轉(zhuǎn)換、優(yōu)化和監(jiān)控等關(guān)鍵步驟。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)對于社交媒體的影響力評估,論述如何運(yùn)用數(shù)據(jù)分析衡量用戶的影響力和傳播效果,為品牌推廣和社交營銷提供決策支持。2、(本題5分)分析在醫(yī)療數(shù)據(jù)的遠(yuǎn)程醫(yī)療應(yīng)用中,如何運(yùn)用數(shù)據(jù)分析保障醫(yī)療服務(wù)的質(zhì)量和安全性,優(yōu)化遠(yuǎn)程醫(yī)療流程。3、(本題5分)在電商平臺的品牌營銷中,數(shù)據(jù)分析能夠精準(zhǔn)定位目標(biāo)客戶和評估品牌影響力。以某電商平臺上的品牌商家為例,闡述如何通過數(shù)據(jù)分析來制定品牌推廣策略、選擇合作渠道、評估品牌價(jià)值,以及如何利用社交媒體數(shù)據(jù)提升品牌知名度。4、(本題5分)在電商供應(yīng)鏈的協(xié)同管理中,如何借助數(shù)據(jù)分析來實(shí)現(xiàn)供應(yīng)商、生產(chǎn)商和零售商之間的信息共享、需求預(yù)測和庫存協(xié)調(diào)?請深入分析數(shù)據(jù)在供應(yīng)鏈協(xié)同中的作用、面臨的技術(shù)障礙和管理挑戰(zhàn)。5、(本題5分)在物流配送中心的選址問題中,如何利用數(shù)據(jù)分析綜合考慮交通、成本、需求等因素,選擇最優(yōu)的配送中心位置。四、案例分析題(本大題共3個(gè)小題,共30分)1、(本題10分)某社交電商平臺記錄了用戶的分享行為、購買轉(zhuǎn)化率、社群活躍度等數(shù)據(jù)。研究社交因素對銷售的影響,優(yōu)化平臺

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論