




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
站名:站名:年級專業:姓名:學號:凡年級專業、姓名、學號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁湖北開放職業學院《設計》
2023-2024學年第二學期期末試卷題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、圖像分割是將圖像分成不同的區域,每個區域具有相似的特征。假設要對醫學圖像進行器官分割,以下關于圖像分割方法的描述,哪一項是不正確的?()A.基于閾值的分割方法簡單直接,但對于復雜圖像效果往往不佳B.基于邊緣檢測的分割方法通過尋找圖像中的邊緣來劃分區域,但容易受到噪聲影響C.基于深度學習的語義分割方法能夠實現像素級別的分類,效果較好,但計算量較大D.圖像分割只適用于灰度圖像,對于彩色圖像無法進行有效的分割2、計算機視覺中的特征提取是非常關鍵的一步。以下關于特征提取方法的描述,不準確的是()A.傳統的特征提取方法如SIFT(尺度不變特征變換)和HOG(方向梯度直方圖)在特定場景下仍然有效B.深度學習中的自動特征提取能夠學習到更具代表性和魯棒性的特征C.特征提取的好壞直接影響后續的圖像分類、目標檢測等任務的性能D.特征提取只關注圖像的局部信息,而忽略了全局信息3、當利用計算機視覺進行圖像去模糊任務,恢復清晰的圖像,以下哪種先驗知識或約束可能有助于解決這個問題?()A.自然圖像的梯度稀疏性B.圖像的低頻成分C.圖像的邊緣信息D.以上都是4、當進行圖像的顯著性檢測時,假設要從一張復雜的圖像中突出顯示出人們視覺上最關注的區域,例如在一張風景圖像中突出顯示出一座顯眼的山峰。以下哪種方法在計算圖像的顯著性時可能更準確?()A.基于頻率域分析的方法,計算圖像的頻譜特征B.基于對比度的方法,比較區域與周圍的差異C.隨機選擇圖像中的部分區域作為顯著性區域D.不進行任何計算,主觀判斷顯著性區域5、計算機視覺中的遙感圖像分析用于獲取地球表面的信息。假設要從衛星遙感圖像中分析土地利用類型和植被覆蓋情況,同時要克服圖像的大尺度和復雜的地物分布。以下哪種遙感圖像分析方法最為有效?()A.基于光譜特征的分析B.基于紋理特征的分析C.基于對象的圖像分析D.基于深度學習的分析6、計算機視覺中的姿態估計任務是估計人體或物體在三維空間中的姿態。假設要估計一個人體模特的姿態。以下關于姿態估計的描述,哪一項是不正確的?()A.可以通過關鍵點檢測和關節角度計算來估計人體姿態B.深度學習中的卷積神經網絡可以直接預測人體姿態的參數C.姿態估計在虛擬現實和增強現實等應用中具有重要作用D.姿態估計的結果總是非常準確,不受人體遮擋和復雜動作的影響7、計算機視覺在文物保護和數字化中的應用可以幫助記錄和分析文物信息。假設要對一件古老的雕塑進行三維數字化和表面紋理分析,以下關于文物保護計算機視覺應用的描述,正確的是:()A.傳統的攝影測量方法在文物數字化中比基于深度學習的方法更精確B.文物的復雜形狀和表面材質對數字化和分析過程沒有挑戰C.結合多種成像技術和計算機視覺算法能夠更全面地獲取文物的信息D.文物保護中的計算機視覺應用不需要考慮對文物的非接觸性和無損性要求8、視頻分析是計算機視覺的一個重要領域。假設要對一段監控視頻中的行為進行分析和理解,以下關于視頻分析方法的描述,正確的是:()A.直接將視頻中的每一幀圖像作為獨立的圖像進行處理,就能準確分析視頻中的行為B.考慮視頻的時序信息和幀間的相關性對于理解復雜的行為非常重要C.視頻分析只適用于簡單的動作識別,對于復雜的多人物交互行為無法處理D.視頻的分辨率和幀率對視頻分析的結果沒有影響9、計算機視覺中的圖像風格遷移是一項有趣的任務。假設要將一幅油畫的風格應用到一張照片上,以下關于模型訓練的要點,哪一項是不正確的?()A.學習油畫和照片的特征表示,找到風格和內容的分離方式B.只關注風格的遷移,不考慮照片原始內容的保留C.采用對抗訓練,使生成的圖像在風格和內容上達到平衡D.調整模型參數,控制風格遷移的強度和效果10、計算機視覺在安防監控領域有廣泛應用。假設要通過監控攝像頭實時檢測人群中的異常行為,以下關于實時性和準確性的平衡,哪一項是最為關鍵的?()A.優先保證實時性,即使準確性略有降低B.優先保證準確性,允許一定的延遲C.不考慮實時性和準確性,只要能檢測出異常行為即可D.完全無法平衡實時性和準確性,只能根據具體情況選擇其一11、計算機視覺中的車牌識別是智能交通系統中的重要組成部分。假設要在一個高速公路收費站實現準確的車牌識別,以下關于車牌識別方法的描述,正確的是:()A.基于邊緣檢測和字符分割的方法對車牌的變形和污漬具有很強的適應性B.深度學習中的卷積神經網絡能夠直接從車牌圖像中識別出字符,但對車牌的傾斜和光照不均敏感C.車牌識別系統只需要在白天光照良好的條件下工作,夜間和惡劣天氣下無法正常運行D.車牌識別的準確率只取決于車牌圖像的清晰度,與車牌的顏色和字體無關12、當利用計算機視覺進行圖像語義分割任務,例如將圖像中的不同物體分割出來,以下哪種深度學習架構可能在分割精度和效率方面表現較好?()A.FCNB.U-NetC.SegNetD.以上都是13、計算機視覺在文物保護和修復中具有潛在應用。假設要對一件受損的古代書畫進行數字化修復,以下關于計算機視覺在文物保護中的作用的描述,哪一項是不正確的?()A.可以通過圖像增強和去噪技術改善書畫的視覺效果B.利用圖像匹配和拼接技術還原殘缺的部分C.計算機視覺技術能夠完全恢復文物的原始狀態,使其與未受損時一模一樣D.為文物修復專家提供輔助決策和參考依據14、計算機視覺中的語義理解旨在理解圖像或視頻中的高層語義信息。以下關于語義理解的說法,不正確的是()A.語義理解需要將圖像中的物體、場景和事件等與先驗知識進行關聯和解釋B.知識圖譜可以為語義理解提供豐富的語義信息和關系C.語義理解在圖像描述生成、問答系統等任務中發揮著重要作用D.語義理解已經達到了非常完美的程度,能夠準確理解任何復雜的圖像或視頻內容15、在計算機視覺的自動駕駛應用中,車輛需要準確識別道路標志、交通信號燈和其他車輛的狀態。對于實時性和準確性要求極高的場景,以下哪種傳感器融合技術能夠為車輛提供更全面和可靠的環境感知?()A.攝像頭與激光雷達的融合B.毫米波雷達與超聲波傳感器的融合C.多種攝像頭的融合D.以上都是16、在一個基于計算機視覺的農業監測系統中,需要對農作物的生長狀況進行評估,例如判斷葉片的顏色、形狀和病蟲害情況。以下哪種圖像分析方法可能對農作物監測較為有效?()A.顏色空間轉換B.形態學分析C.紋理分析D.以上都是17、計算機視覺在安防監控領域有重要應用。假設要通過攝像頭監控一個公共場所,以下關于計算機視覺在安防監控中的應用描述,哪一項是不正確的?()A.可以實時檢測異常行為,如人群聚集、奔跑等B.能夠對人員進行身份識別和認證C.計算機視覺系統可以獨立完成所有的安防監控任務,不需要人工干預D.與其他安防設備和系統集成,提高整體的安全性和防范能力18、計算機視覺在自動駕駛領域有重要應用。假設要開發一個能夠識別道路標志的系統,以下關于應對不同光照條件的策略,哪一項是最為有效的?()A.使用固定的閾值對圖像進行二值化處理B.采用自適應的圖像增強算法,根據光照情況調整圖像C.忽略光照變化,依靠模型的泛化能力D.只在特定的光照條件下收集訓練數據19、計算機視覺中的醫學圖像分析具有重要的臨床應用價值。假設要從一組X光片中檢測出病變區域,同時要區分不同類型的病變。以下哪種技術和方法在醫學圖像分析中最為常用和有效?()A.形態學操作B.圖像分割與分類C.特征提取與選擇D.以上方法綜合運用20、計算機視覺在農業領域的應用可以幫助實現精準農業。假設一個農場需要通過計算機視覺監測農作物的生長狀況。以下關于計算機視覺在農業中的描述,哪一項是錯誤的?()A.可以檢測農作物的病蟲害,及時采取防治措施B.能夠評估農作物的生長階段和成熟度,指導收獲時間C.計算機視覺在農業中的應用完全不受天氣和光照條件的影響D.可以通過無人機搭載攝像頭進行大面積的農田監測21、計算機視覺中的行人檢測是智能監控系統中的重要任務。假設要在一個擁擠的公共場所中準確檢測出行人,同時要排除其他類似物體的干擾。以下哪種行人檢測方法在這種復雜環境下具有更高的檢測率和較低的誤檢率?()A.基于HOG特征的行人檢測B.基于深度學習的行人檢測C.基于運動信息的行人檢測D.基于形狀模板的行人檢測22、計算機視覺中的圖像超分辨率重建旨在提高圖像的分辨率和細節。假設要將一張低分辨率的老照片重建為高分辨率的清晰圖像,同時要保持圖像的自然度和真實性。以下哪種圖像超分辨率重建方法最為適合?()A.基于插值的方法B.基于重建的方法C.基于深度學習的方法D.基于學習字典的方法23、目標檢測是計算機視覺中的常見任務,例如在監控視頻中檢測行人或車輛。假設我們要開發一個目標檢測系統,以下關于目標檢測算法的描述,哪一項是不正確的?()A.基于區域建議的方法,如R-CNN系列算法,通過生成候選區域并對其進行分類和定位來實現目標檢測B.一階段目標檢測算法,如YOLO和SSD,直接在圖像上進行目標的分類和定位,速度相對較快C.目標檢測算法的性能通常用準確率、召回率和平均精度均值(mAP)等指標來評估D.目標檢測算法的精度和速度是相互獨立的,提高精度不會影響速度,反之亦然24、計算機視覺在虛擬現實(VR)和增強現實(AR)中有著重要的應用。假設要在VR游戲中實現真實的場景交互。以下關于計算機視覺在VR/AR中的描述,哪一項是不正確的?()A.可以通過對用戶的動作和姿態進行識別,實現自然的交互操作B.能夠將虛擬物體與真實場景進行準確的融合和匹配C.計算機視覺技術可以提高VR/AR體驗的沉浸感和真實感D.VR/AR中的計算機視覺應用不存在任何技術挑戰和限制25、對于圖像的超分辨率重建任務,假設要將一張低分辨率的圖像恢復為高分辨率圖像,同時保留圖像的細節和清晰度。這張低分辨率圖像可能存在模糊和失真。以下哪種方法在處理這種情況時可能表現更好?()A.基于插值的方法,如雙線性插值和雙三次插值B.基于深度學習的超分辨率重建模型,如SRCNNC.對低分辨率圖像進行簡單的銳化處理D.不進行任何處理,直接使用低分辨率圖像26、計算機視覺中的視頻目標跟蹤中,假設目標在跟蹤過程中發生了嚴重的形變。以下關于處理目標形變的方法描述,正確的是:()A.基于模板匹配的跟蹤方法能夠自適應地處理目標形變,保持跟蹤的準確性B.特征點跟蹤方法對目標形變不敏感,在這種情況下仍然能夠可靠跟蹤C.深度學習中的孿生網絡在目標形變時容易丟失目標,無法繼續跟蹤D.結合多種特征和模型更新策略可以提高對目標形變的跟蹤魯棒性27、計算機視覺中的表情識別旨在識別圖像或視頻中人物的表情。假設要在一個情感分析系統中準確識別表情,以下關于表情識別方法的描述,正確的是:()A.基于幾何特征的表情識別方法對表情的細微變化不敏感,識別準確率低B.基于紋理特征的表情識別方法能夠很好地捕捉表情的局部特征,但容易受到光照影響C.深度學習中的卷積神經網絡在表情識別中能夠學習到全局和局部的特征,但對大規模數據集依賴嚴重D.表情識別系統只適用于正面清晰的人臉表情,對于側臉和遮擋的表情無法識別28、在計算機視覺的姿態估計任務中,例如估計人體關節的位置和姿態,以下哪種方法可能在精度和實時性之間取得較好的平衡?()A.基于模型的方法B.基于深度學習的回歸方法C.基于深度學習的分類方法D.以上都不是29、計算機視覺中的圖像增強旨在改善圖像的質量和視覺效果。假設一張低對比度、有噪聲的醫學圖像需要進行增強處理,以突出病變區域并減少噪聲的影響。以下哪種圖像增強技術最為適合?()A.直方圖均衡化B.中值濾波C.高斯濾波D.銳化濾波30、在計算機視覺的視頻分析中,假設要對一段監控視頻中的異常行為進行檢測。以下關于特征提取的方法,哪一項是不太適合的?()A.提取每一幀圖像的顏色、紋理等低級特征B.利用光流信息來捕捉物體的運動特征C.僅分析視頻的音頻信息,忽略圖像內容D.結合時空特征,同時考慮空間和時間維度的信息二、應用題(本大題共5個小題,共25分)1、(本題5分)基于計算機視覺的智能農業灌溉系統,根據作物生長情況精準控制灌溉量。2、(本題5分)開發一個可以識別不同種類昆蟲蛹的計算機視覺應用。3、(本題5分)基于計算機視覺的智能交通信號燈控制系統,根據實時交通流量調整信號燈時長。4、(本題5分)基于深度學習的圖像超分辨率技術,提高低分辨率圖像的清晰度。5、(本題5分)通過圖像分類算法,對不同種類的植物葉片圖像進行分類。三、簡答題(本大題共5個小題,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論