廣東省珠海市名校2024年中考數學最后沖刺濃縮卷含解析_第1頁
廣東省珠海市名校2024年中考數學最后沖刺濃縮卷含解析_第2頁
廣東省珠海市名校2024年中考數學最后沖刺濃縮卷含解析_第3頁
廣東省珠海市名校2024年中考數學最后沖刺濃縮卷含解析_第4頁
廣東省珠海市名校2024年中考數學最后沖刺濃縮卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省珠海市名校2024年中考數學最后沖刺濃縮精華卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值為()A. B. C. D.2.根據如圖所示的程序計算函數y的值,若輸入的x值是4或7時,輸出的y值相等,則b等于()A.9 B.7 C.﹣9 D.﹣73.計算3–(–9)的結果是()A.12 B.–12 C.6 D.–64.如圖,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,則DE的長為()A.6 B.8 C.10 D.125.如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于()A. B.2 C.4 D.36.關于x的方程12x=kA.0或127.下列運算正確的是()A.x2?x3=x6 B.x2+x2=2x4C.(﹣2x)2=4x2 D.(a+b)2=a2+b28.(3分)如圖,是按一定規律排成的三角形數陣,按圖中數陣的排列規律,第9行從左至右第5個數是()A.2 B. C.5 D.9.已知△ABC中,∠BAC=90°,用尺規過點A作一條直線,使其將△ABC分成兩個相似的三角形,其作法不正確的是(

)A.

B.C.

D.10.如圖給定的是紙盒的外表面,下面能由它折疊而成的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.工人師傅常用角尺平分一個任意角.做法如下:如圖,∠AOB是一個任意角,在邊OA,OB上分別取OM=ON,移動角尺,使角尺兩邊相同的刻度分別與M,N重合.過角尺頂點C的射線OC即是∠AOB的平分線.做法中用到全等三角形判定的依據是______.12.如圖,△ABC的面積為6,平行于BC的兩條直線分別交AB,AC于點D,E,F,G.若AD=DF=FB,則四邊形DFGE的面積為_____.13.如圖,長方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則△AFC的面積等于___.14.如圖,已知,點為邊中點,點在線段上運動,點在線段上運動,連接,則周長的最小值為______.15.已知ab=﹣2,a﹣b=3,則a3b﹣2a2b2+ab3的值為_______.16.如圖,從一塊直徑是8m的圓形鐵皮上剪出一個圓心角為90°的扇形,將剪下的扇形圍成一個圓錐,圓錐的高是_________m.17.有五張背面完全相同的卡片,其正面分別畫有等腰三角形、平行四邊形、矩形、正方形、菱形,將這五張卡片背面朝上洗勻,從中隨機抽取一張,卡片上的圖形是中心對稱圖形的概率是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知二次函數的圖象與x軸交于A,B兩點,與y軸交于點C,的半徑為,P為上一動點.點B,C的坐標分別為______,______;是否存在點P,使得為直角三角形?若存在,求出點P的坐標;若不存在,請說明理由;連接PB,若E為PB的中點,連接OE,則OE的最大值______.19.(5分)為厲行節能減排,倡導綠色出行,今年3月以來.“共享單車”(俗稱“小黃車”)公益活動登陸我市中心城區.某公司擬在甲、乙兩個街道社區投放一批“小黃車”,這批自行車包括A、B兩種不同款型,請回答下列問題:問題1:單價該公司早期在甲街區進行了試點投放,共投放A、B兩型自行車各50輛,投放成本共計7500元,其中B型車的成本單價比A型車高10元,A、B兩型自行車的單價各是多少?問題2:投放方式該公司決定采取如下投放方式:甲街區每1000人投放a輛“小黃車”,乙街區每1000人投放輛“小黃車”,按照這種投放方式,甲街區共投放1500輛,乙街區共投放1200輛,如果兩個街區共有15萬人,試求a的值.20.(8分)如圖,∠AOB=90°,反比例函數y=﹣(x<0)的圖象過點A(﹣1,a),反比例函數y=(k>0,x>0)的圖象過點B,且AB∥x軸.(1)求a和k的值;(2)過點B作MN∥OA,交x軸于點M,交y軸于點N,交雙曲線y=于另一點C,求△OBC的面積.21.(10分)《九章算術》中有一道闡述“盈不足術”的問題,原文如下:今有人共買物,人出八,盈三;人出七,不足四.問人數,物價各幾何?譯文為:現有一些人共同買一個物品,每人出8元,還盈余3元;每人出7元,則還差4元,問共有多少人?這個物品的價格是多少?請解答上述問題.22.(10分)一名在校大學生利用“互聯網+”自主創業,銷售一種產品,這種產品的成本價10元/件,已知銷售價不低于成本價,且物價部門規定這種產品的銷售價不高于16元/件,市場調查發現,該產品每天的銷售量(件與銷售價(元/件)之間的函數關系如圖所示.求與之間的函數關系式,并寫出自變量的取值范圍;求每天的銷售利潤W(元與銷售價(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?23.(12分)如圖,在四邊形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四邊形ABCD的周長.24.(14分)如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作發現如圖1,固定△ABC,使△DEC繞點C旋轉.當點D恰好落在BC邊上時,填空:線段DE與AC的位置關系是;②設△BDC的面積為S1,△AEC的面積為S1.則S1與S1的數量關系是.猜想論證當△DEC繞點C旋轉到圖3所示的位置時,小明猜想(1)中S1與S1的數量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想.拓展探究已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF=S△BDC,請直接寫出相應的BF的長

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據銳角三角函數的定義求出即可.【詳解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴tanA=.故選A.【點睛】本題考查了銳角三角函數的定義,熟記銳角三角函數的定義內容是解題的關鍵.2、C【解析】

先求出x=7時y的值,再將x=4、y=-1代入y=2x+b可得答案.【詳解】∵當x=7時,y=6-7=-1,∴當x=4時,y=2×4+b=-1,解得:b=-9,故選C.【點睛】本題主要考查函數值,解題的關鍵是掌握函數值的計算方法.3、A【解析】

根據有理數的減法,即可解答.【詳解】故選A.【點睛】本題考查了有理數的減法,解決本題的關鍵是熟記減去一個數等于加上這個數的相反數.4、C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,,∴四邊形BFED是平行四邊形,∴BD=EF,∴,解得:DE=10.故選C.5、B【解析】【分析】依據點C在雙曲線y=上,AC∥y軸,BC∥x軸,可設C(a,),則B(3a,),A(a,),依據AC=BC,即可得到﹣=3a﹣a,進而得出a=1,依據C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進而得到Rt△ABC中,AB=2.【詳解】點C在雙曲線y=上,AC∥y軸,BC∥x軸,設C(a,),則B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(負值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故選B.【點睛】本題主要考查了反比例函數圖象上點的坐標特征,注意反比例函數圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.6、A【解析】方程兩邊同乘2x(x+3),得x+3=2kx,(2k-1)x=3,∵方程無解,∴當整式方程無解時,2k-1=0,k=12當分式方程無解時,①x=0時,k無解,②x=-3時,k=0,∴k=0或12故選A.7、C【解析】

根據同底數冪的法則、合并同類項的法則、積的乘方法則、完全平方公式逐一進行計算即可.【詳解】A、x2?x3=x5,故A選項錯誤;B、x2+x2=2x2,故B選項錯誤;C、(﹣2x)2=4x2,故C選項正確;D、(a+b)2=a2+2ab+b2,故D選項錯誤,故選C.【點睛】本題考查了同底數冪的乘法、合并同類項、積的乘方以及完全平方公式,熟練掌握各運算的運算法則是解題的關鍵8、B【解析】

根據三角形數列的特點,歸納出每一行第一個數的通用公式,即可求出第9行從左至右第5個數.【詳解】根據三角形數列的特點,歸納出每n行第一個數的通用公式是,所以,第9行從左至右第5個數是=.故選B【點睛】本題主要考查歸納推理的應用,根據每一行第一個數的取值規律,利用累加法求出第9行第五個數的數值是解決本題的關鍵,考查學生的推理能力.9、D【解析】分析:根據過直線外一點作這條直線的垂線,及線段中垂線的做法,圓周角定理,分別作出直角三角形斜邊上的垂線,根據直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;即可作出判斷.詳解:A、在角∠BAC內作作∠CAD=∠B,交BC于點D,根據余角的定義及等量代換得出∠B+∠BAD=90°,進而得出AD⊥BC,根據直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;A不符合題意;B、以點A為圓心,略小于AB的長為半徑,畫弧,交線段BC兩點,再分別以這兩點為圓心,大于兩交點間的距離為半徑畫弧,兩弧相交于一點,過這一點與A點作直線,該直線是BC的垂線;根據直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形是彼此相似的;B不符合題意;C、以AB為直徑作圓,該圓交BC于點D,根據圓周角定理,過AD兩點作直線該直線垂直于BC,根據直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;C不符合題意;D、以點B為圓心BA的長為半徑畫弧,交BC于點E,再以E點為圓心,AB的長為半徑畫弧,在BC的另一側交前弧于一點,過這一點及A點作直線,該直線不一定是BE的垂線;從而就不能保證兩個小三角形相似;D符合題意;故選D.點睛:此題主要考查了相似變換以及相似三角形的判定,正確掌握相似三角形的判定方法是解題關鍵.10、B【解析】

將A、B、C、D分別展開,能和原圖相對應的即為正確答案:【詳解】A、展開得到,不能和原圖相對應,故本選項錯誤;B、展開得到,能和原圖相對,故本選項正確;C、展開得到,不能和原圖相對應,故本選項錯誤;D、展開得到,不能和原圖相對應,故本選項錯誤.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、SSS.【解析】

由三邊相等得△COM≌△CON,即由SSS判定三角全等.做題時要根據已知條件結合判定方法逐個驗證.【詳解】由圖可知,CM=CN,又OM=ON,∵在△MCO和△NCO中,∴△COM≌△CON(SSS),∴∠AOC=∠BOC,即OC是∠AOB的平分線.故答案為:SSS.【點睛】本題考查了全等三角形的判定及性質.要熟練掌握確定三角形的判定方法,利用數學知識解決實際問題是一種重要的能力,要注意培養.12、1.【解析】

先根據題意可證得△ABC∽△ADE,△ABC∽△AFG,再根據△ABC的面積為6分別求出△ADE與△AFG的面積,則四邊形DFGE的面積=S△AFG-S△ADE.【詳解】解:∵DE∥BC,,

∴△ADE∽△ABC,∵AD=DF=FB,

∴=()1,即=()1,∴S△ADE=;∵FG∥BC,∴△AFG∽△ABC,

=()1,即=()1,∴S△AFG=;∴S四邊形DFGE=S△AFG-S△ADE=-=1.故答案為:1.【點睛】本題考查了相似三角形的性質與應用,解題的關鍵是熟練的掌握相似三角形的性質與應用.13、【解析】

由矩形的性質可得AB=CD=4,BC=AD=6,AD//BC,由平行線的性質和折疊的性質可得∠DAC=∠ACE,可得AF=CF,由勾股定理可求AF的長,即可求△AFC的面積.【詳解】解:四邊形ABCD是矩形,,,折疊,在中,,,.故答案為:.【點睛】本題考查了翻折變換,矩形的性質,勾股定理,利用勾股定理求AF的長是本題的關鍵.14、【解析】

作梯形ABCD關于AB的軸對稱圖形,將BC'繞點C'逆時針旋轉120°,則有GE'=FE',P與Q是關于AB的對稱點,當點F'、G、P三點在一條直線上時,△FEP的周長最小即為F'G+GE'+E'P,此時點P與點M重合,F'M為所求長度;過點F'作F'H⊥BC',M是BC中點,則Q是BC'中點,由已知條件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以F'H=,HC'=1,在Rt△MF'H中,即可求得F'M.【詳解】作梯形ABCD關于AB的軸對稱圖形,作F關于AB的對稱點G,P關于AB的對稱點Q,∴PF=GQ,將BC'繞點C'逆時針旋轉120°,Q點關于C'G的對應點為F',∴GF'=GQ,設F'M交AB于點E',∵F關于AB的對稱點為G,∴GE'=FE',

∴當點F'、G、P三點在一條直線上時,△FEP的周長最小即為F'G+GE'+E'P,此時點P與點M重合,∴F'M為所求長度;

過點F'作F'H⊥BC',

∵M是BC中點,

∴Q是BC'中點,

∵∠B=90°,∠C=60°,BC=2AD=4,

∴C'Q=F'C'=2,∠F'C'H=60°,

∴F'H=,HC'=1,∴MH=7,

在Rt△MF'H中,F'M;

∴△FEP的周長最小值為.

故答案為:.【點睛】本題考查了動點問題的最短距離,涉及的知識點有:勾股定理,含30度角直角三角形的性質,能夠通過軸對稱和旋轉,將三角形的三條邊轉化為線段的長是解題的關鍵.15、﹣18【解析】

要求代數式a3b﹣2a2b2+ab3的值,而代數式a3b﹣2a2b2+ab3恰好可以分解為兩個已知條件ab,(a﹣b)的乘積,因此可以運用整體的數學思想來解答.【詳解】a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2,當a﹣b=3,ab=﹣2時,原式=﹣2×32=﹣18,故答案為:﹣18.【點睛】本題考查了因式分解在代數式求值中的應用,熟練掌握因式分解的方法以及運用整體的數學思想是解題的關鍵.16、【解析】分析:首先連接AO,求出AB的長度是多少;然后求出扇形的弧長弧BC為多少,進而求出扇形圍成的圓錐的底面半徑是多少;最后應用勾股定理,求出圓錐的高是多少即可.詳解:如圖1,連接AO,∵AB=AC,點O是BC的中點,∴AO⊥BC,又∵∴∴∴弧BC的長為:(m),∴將剪下的扇形圍成的圓錐的半徑是:(m),∴圓錐的高是:故答案為.點睛:考查圓錐的計算,正確理解圓錐的側面展開圖與原來扇形之間的關系式解決本題的關鍵.17、【解析】分析:直接利用中心對稱圖形的性質結合概率求法直接得出答案.詳解:∵等腰三角形、平行四邊形、矩形、正方形、菱形中,平行四邊形、矩形、正方形、菱形都是中心對稱圖形,∴從中隨機抽取一張,卡片上的圖形是中心對稱圖形的概率是:.故答案為.點睛:此題主要考查了中心對稱圖形的性質和概率求法,正確把握中心對稱圖形的定義是解題關鍵.三、解答題(共7小題,滿分69分)18、(1)B(1,0),C(0,﹣4);(2)點P的坐標為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1).【解析】試題分析:(1)在拋物線解析式中令y=0可求得B點坐標,令x=0可求得C點坐標;(2)①當PB與⊙相切時,△PBC為直角三角形,如圖1,連接BC,根據勾股定理得到BC=5,BP2的值,過P2作P2E⊥x軸于E,P2F⊥y軸于F,根據相似三角形的性質得到=2,設OC=P2E=2x,CP2=OE=x,得到BE=1﹣x,CF=2x﹣4,于是得到FP2,EP2的值,求得P2的坐標,過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2),②當BC⊥PC時,△PBC為直角三角形,根據相似三角形的判定和性質即可得到結論;(1)如圖1中,連接AP,由OB=OA,BE=EP,推出OE=AP,可知當AP最大時,OE的值最大.試題解析:(1)在中,令y=0,則x=±1,令x=0,則y=﹣4,∴B(1,0),C(0,﹣4);故答案為1,0;0,﹣4;(2)存在點P,使得△PBC為直角三角形,分兩種情況:①當PB與⊙相切時,△PBC為直角三角形,如圖(2)a,連接BC,∵OB=1.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=,過P2作P2E⊥x軸于E,P2F⊥y軸于F,則△CP2F∽△BP2E,四邊形OCP2B是矩形,∴=2,設OC=P2E=2x,CP2=OE=x,∴BE=1﹣x,CF=2x﹣4,∴=2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2);②當BC⊥PC時,△PBC為直角三角形,過P4作P4H⊥y軸于H,則△BOC∽△CHP4,∴=,∴CH=,P4H=,∴P4(,﹣﹣4);同理P1(﹣,﹣4);綜上所述:點P的坐標為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1)如圖(1),連接AP,∵OB=OA,BE=EP,∴OE=AP,∴當AP最大時,OE的值最大,∵當P在AC的延長線上時,AP的值最大,最大值=,∴OE的最大值為.故答案為.19、問題1:A、B兩型自行車的單價分別是70元和80元;問題2:a的值為1【解析】

問題1:設A型車的成本單價為x元,則B型車的成本單價為(x+10)元,依題意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B兩型自行車的單價分別是70元和80元;問題2:由題可得,×1000+×1000=10000,解得a=1,經檢驗:a=1是分式方程的解,故a的值為1.20、(1)a=2,k=8(2)=1.【解析】分析:(1)把A(-1,a)代入反比例函數得到A(-1,2),過A作AE⊥x軸于E,BF⊥x軸于F,根據相似三角形的性質得到B(4,2),于是得到k=4×2=8;

(2)求的直線AO的解析式為y=-2x,設直線MN的解析式為y=-2x+b,得到直線MN的解析式為y=-2x+10,解方程組得到C(1,8),于是得到結論.詳解:(1)∵反比例函數y=﹣(x<0)的圖象過點A(﹣1,a),∴a=﹣=2,∴A(﹣1,2),過A作AE⊥x軸于E,BF⊥⊥x軸于F,∴AE=2,OE=1,∵AB∥x軸,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO∽△OFB,∴,∴OF=4,∴B(4,2),∴k=4×2=8;(2)∵直線OA過A(﹣1,2),∴直線AO的解析式為y=﹣2x,∵MN∥OA,∴設直線MN的解析式為y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直線MN的解析式為y=﹣2x+10,∵直線MN交x軸于點M,交y軸于點N,∴M(5,0),N(0,10),解得,,∴C(1,8),∴△OBC的面積=S△OMN﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=1.點睛:本題考查了一次函數圖象上點的坐標特征,反比例函數與一次函數交點問題,相似三角形的判定和性質,求函數的解析式,三角形的面積的計算,正確的作出輔助線是解題的關鍵.21、共有7人,這個物品的價格是53元.【解析】

根據題意,找出等量關系,列出一元一次方程.【詳解】解:設共有x人,這個物品的價格是y元,解得答:共有7人,這個物品的價格是53元.【點睛】本題考查了二元一次方程的應用.22、(1)(2),,144元【解析】

(1)利用待定系數法求解可得關于的函數解析式;(2)根據“總利潤每件的利潤銷售量”可得函數解析式,將其配方成頂點式,利用二次函數的性質進一步求解可得.【詳解】(1)設與的函數解析式為,將、代入,得:,解得:,所以與的函數解析式為;(2)根據題意知,,,當時,隨的增大而增大,,當時,取得最大值,最大值為144,答:每件銷售價為16元時,每天的銷售利潤最大,最大利潤是144元.【點睛】本題考查了二次函數的應用,解題的關鍵是熟練掌握待定系數法求函數解析式及根據相等關系列出二次函數解析式及二次函數的性質.23、38+12【解析】

根據∠ABC=90°,AE=CE,EB=12,求出AC,根據Rt△ABC中,∠CAB=30°,BC=12,求出根據DE⊥AC,AE=CE,得AD=DC,在Rt△ADE中,由勾股定理求出AD,從而得出DC的長,最后根據四邊形ABCD的周長=AB+BC+CD+DA即可得出答案.【詳解】∵∠ABC=90°,AE=CE,EB=12,∴EB=AE=CE=12,∴AC=AE+CE=24,∵在Rt△ABC中,∠CAB=30°,∴BC=12,∵DE⊥AC,AE=CE,∴AD=DC,在Rt△ADE中,由勾股定理得∴DC=13,∴四邊形ABCD的周長=AB+BC+CD+DA=【點睛】此題考查了解直角三角形,用到的知識點是解直角三角形、直角三角形斜邊上的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論