自動控制原理課件 Chapter 9 Stability in theFrequency Domain學習資料_第1頁
自動控制原理課件 Chapter 9 Stability in theFrequency Domain學習資料_第2頁
自動控制原理課件 Chapter 9 Stability in theFrequency Domain學習資料_第3頁
自動控制原理課件 Chapter 9 Stability in theFrequency Domain學習資料_第4頁
自動控制原理課件 Chapter 9 Stability in theFrequency Domain學習資料_第5頁
已閱讀5頁,還剩96頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

Chapter9

StabilityintheFrequencyDomainIntroductionTheNyquistCriterionRelativeStabilityandtheNyquistCriterionTime-DomainPerformanceCriteriaintheFrequencyDomainStabilityintheFrequencyDomainUsingControlDesignSoftwareSequentialDesignExample:DiskDriveReadSystem9.1IntroductionVarioustoolstodeterminethestability(relativestability)Routh-HurwitzstabilitycriterionRootlocusmethodFrequencydomainmethod—NyquiststabilitycriterionItinvestigatesthestabilityofasystemintherealfrequencydomainItcanbeutilizedtoinvestigatetherelativestabilityofasystemwhenthesystemparametervalueshavenotbeendetermined.Itwouldbeusefulfordeterminingsuitableapproachestoadjustingtheparametersofasysteminordertoincreaseitsrelativestability.9.1IntroductionTodeterminetherelativestabilityofaclosed-loopsystem,wemustinvestigatethecharacteristicequationofthesystem:

(9.1)Toensurestability,wemustascertainthatallthezerosofF(s)lieintheleft-hands-plane.Nyquistthusproposedamappingoftheright-hands-planeintotheF(s)-plane.TouseandunderstandNyquist'scriterion,weshallfirstconsiderbrieflythemappingofcontoursortrajectoriesinthecomplexplaneintoanotherplanebyarelation

functionF(s).

9.2MappingContoursinthes-planeAcontourmap:s-plane—F(s)=u+jv-planeExample:F(s)=2s+1S-plane,s=σ+jω;F(s)-plane:F(s)=u+jv=2(σ+jω)+1 u=2σ+1,v=2ωUnitsquarecontourSquarecontourwiththecentershiftedbyoneunitandthemagnitudeofasidemultipliedby2.Conformalmappingtheanglesofthes-planecontourandF(s)-planecontouristhesametheclosedcontourinthes-planeresultsinaclosedcontourintheF(s)-planedirectionofcontoursassumeclockwisetraversalofacontourtobepositivetheareaenclosedwithinthecontourtobeontherightofthetraversalofthecontourExample:F(s)=s/(s+2)Anotherexample:F(s)=s/(s+1/2)Cauchy’stheorem-principleoftheargumentMappingofthefunctionwithafinitenumberofpolesandzeroswithinthecontourCauchy’stheorem:IfacontourΓs

inthes-planeencirclesZzerosandPpolesofF(s)anddoesnotpassthroughanypolesandzerosofF(s)andthetraversalisintheclockwisedirectionalongthecontour,thecorrespondingcontourΓF

intheF(s)-planeencirclestheoriginoftheF(s)-planeN=Z-Ptimesintheclockwisedirection.78OtherpatternsoftheuseofCauchy’stheoremOpenlooptransferfunctionClosed-looptransferfunction+-10LetUsuallyareopenpolesThusZeorsofassistantfunctionequalstothepolesofclosed-loopsystemPolesofassistantfunctionequalstothepolesofopen-loopsystem119.3TheNyquistcriterionConsiderthecharacteristicequationF(s)=0Forasystemtobestable,allthezerosofF(s)mustlieintheleft-hands-plane,thatistheleftofthejω-axisinthes-planeInthes-plane,chooseaspecialcontourΓs

thatenclosestheentireright-hands-planeIntheF(s)-plane,examineN,i.e.,ΓF

’sencirclementnumberoftheorigin.AccordingtoN=Z-P,determinewhetheranyzerosofF(s)liewithinΓs.Wewillget

Z=N+PPisthenumberofpolesofF(s)intheright-hands-plane.Thus,ifP=0,asisusuallythecase,wefindthatthenumberofunstablerootsofthesystemisequaltoN,thenumberofencirclementsoftheoriginoftheF(s)-plane.IfZ>0,unstable.IfZ=0,stable.TheNyquistcontourthatenclosestheentireright-hands-planeisshownintheFigure.ThecontourΓspassesalongthejω-axisfrom–j∞to+j∞.Thecontouriscompletedbyasemicircularpathofradiusr,whererapproachesinfinitysothispartofthecontourtypicallymapstoapoint.ThiscontourΓFisknownastheNyquistdiagramorpolarplot.HowtoknowNaccordingtoGH(jω)?Mappingofthecharacteristicequation

F(s)=1+GH(s)FunctionGH(s)=F(s)-1ConstructΓGH(s)correspondingtotheselectedΓsjω:0→∞,G(jω),frequencyresponsecharacteristicjω:-∞→0,besymmetricaltotheaboveThecircle:originThenumberofclockwiseencirclementsoftheoriginoftheF(s)-planebecomesthenumberofclockwiseencirclementofthe(–1,j0)pointintheGH(s)-plane.Nyquiststabilitycriterion:Afeedbackcontrolsystemisstableifandonlyif,inthecontourΓGH,thenumberofcounterclockwiseencirclementsofthe(-1,j0)isequaltothenumberofpolesofGH(s)withpositiverealparts.Z=N+P=0SpecialconditionP=0AfeedbacksystemisstableifandonlyifthecontourΓGHintheGH(s)-planedoesnotencirclethe(-1,j0)pointwhenthenumberofpolesGH(s)intheright-hands-planeiszero.(P=0)Z=N=0Example9.1systemwithtworealpolesExample9.2SystemwithapoleattheoriginContourΓscannotpassthroughanypolesorzerosofF(s).ThusselecttheaboveΓsinthes-plane.ConstructthecontoursΓGH---4portions(1)Theoriginofthes-plane.Thesmallsemicirculardetouraroundthepoleattheorigincanberepresentedbysettings=εej?

andallowing?

tovaryfrom-90°atω=0-to+90°atω=0+.Becauseεapproacheszero,themappingforGH(s)istheangleofthecontourintheL(s)-planechangesfrom90°atω=0-to-90°atω=0+,passingthrough0°atω=0.TheradiusofthecontourintheL(s)-planeforthisportionofthecontourisinfinite.(2)Theportionfromω=0+toω=+∞Themagnitudeapproachesto0atanangleof-180°(3)Theportionfromω=+∞toω=-∞

Thecontourmovesfromanangleof-180°atω=+∞toanangleof+180°atω=-∞.Themagnitudeofthecontourwhenrisinfiniteisalwayszerooraconstant.(4)Theportionfromω=-∞toω=0-

StabilityP=0:Numberofpolesintheright-hands-planeiszero.N=0:ContourΓGHdonotencirclethe(-1,j0)pointintheGH-plane.Z=N+P=0.Thesystemisstable.Thegeneralconclusionfromthisexample:Thecontourfortherange-∞<ω<0—willbethecomplexconjugateoftheplotfromtherange0+<ω<+∞.ThereforeitissufficienttoconstructthecontourΓGHfrom0+<ω<+∞.ThemagnitudeofGH(s)ass=rejΦandr→∞willnormallyapproachzerooraconstant.Example9.3

SystemwiththreepolesThepointpassingthroughtheimaginarypartis,GH(s)=u+jv,v=0.,and ,therealpartThenthesystemisstablewhenwhenExample9.4SystemwithtwopolesattheoriginZ=2,UnstablesystemTherealfrequencypolarplotisobtainedwhens=jωtheangleofL(jω)isalways-180°orless,andthelocusofL(jω)isabovetheω-axisforallvaluesofω.As

ω

approaches0+,As

ωapproaches+∞,Atthesmallsemicirculardetourattheoriginofthes-planewheres=εej?Example9.5Systemwithapoleintheright-hands-planeP=1,N=1,Z=2,unstablesystemExample9.6Example9.7Systemwithazerointheright-hands-plane9.4RelativestabilityandtheNyquistcriterionMeasuretherelativestabilityRelativesettlingtimeofeachrootorpairofroots.Shortersettlingtimemeansmorerelativelystable.(chapter6)TheNyquiststabilitycriterionisdefinedintermsofthe(-1,0)pointonthepolarplotorthe0dB,-180°pointontheBodediagramorlog-magnitude-phasediagram.

StabilityMargins

DefinitionsofStabilityMarginsCalculationsofStabilityMargins31

StabilityMarginsTimedomain(t)ThedynamicalperformanceStableboundaryFrequencydomain(w)HowstablethesystemisImaginaryaxisDampedratio

xThedistanceto(-1,j0)(-1,j0)Stabilitymargins(Open-loopfrequencyindices)Howstableitis32

StabilityMargins§

TheDefinitionofStabilityMargins

ThegeometrymeaningofCutofffrequency

wcPhasemarginGainmarginThestabilitydepthontheGainPhaseGenerallyThephysicsmeaningofPhasecrossoverfrequency33DemonstrationexampleMarginalsituation:GainmarginandphasemargininBodeplot:Clearly,thefeedbacksystemL2(jω)isrelativelylessstablethanthesystemL1(jω).

§StabilityMargins§CalculationsofStabilityMargins

SolutionI:ObtaingandhbytheNyquistplot,obtain(1)LetT.&E.37

§StabilityMarginsLetWehave38

§StabilityMarginsRewriteG(jw)

intotherealpartplustheimaginarypartLetWehaveSubstitutetotheRP39

§StabilityMarginsFromL(w):WehaveSolutionII:DeterminebyBodediagram40

§StabilityMarginsSolution.Determineby

L(w)SolutionI:,DetermineSolutionII:41

ObtainwgRewrittenasWehave42

SummaryConcept(Open-loopfrequencyindex)Definitions

CalculationsCutofffrequencywc

PhasemargingPhasecrossoverfrequencywg

Amplitudemargins

hMeaningsThegeometrymeaningofThephysicalmeaningof43

SystemAnalysisbyFrequencyResponseCharacteristicsofOpen-LoopSystems

CorrelationbetweenL(ω)LowFrequencySectionandSteadyStateErrorsCorrelationbetweenL(ω)MidFrequencySectionandDynamicPerformancesImpactsofL(ω)HighFrequencySectiononSystemPerformances44

AnalysisbyFrequencyResponseofO.L.SystemsTri-BandinFrequency

1.Lowerfrequencybandof

L(w)

?ess2.Middlefrequencybandof

L(w)?(s,ts)3.Higherfrequencybandof

L(w)?Theabilityofanti-high-frequencynoise

Thecorrelationbetweentheslopeof

L(w)and

j(w)ofminimumphasesystemsIdeally,L(w)crossesthe0dBlinewithaslopeof-20dB/decandretainsabroadband45

Bodediagramforthesystem46

Determinetheshapeof

j(w)Thecorrelationbetweenj(w)andL(w)(k=1)ofminimumphasesystem.§AnalysisbyFrequencyResponseofO.L.Systems47

Thecorrelationbetweenj(w)andL(w).(k=1)ofminimumphasesystems§AnalysisbyFrequencyResponseofO.L.Systems48

(1)Second-ordersystem

§AnalysisbyFrequencyResponseofO.L.Systems49

§AnalysisbyFrequencyResponseofO.L.Systems50

Considerthesystemshowninthefigure.Obtainthe

wc,s

and

ts.Solution.Sketch

L(w)RefertoFigTimedomainmethod:§AnalysisbyFrequencyResponseofO.L.Systems51

(2)Higher-ordersystem§5AnalysisbyFrequencyResponseofO.L.Systems52

Solution.Sketch

L(w)RefertoFig.

Obtain

wc,g,s

and

ts

fortheunityfeedbacksystem.§AnalysisbyFrequencyResponseofO.L.Systems53

Estimatethedynamicperformanceofhigher-ordersystembyfrequencyresponsemethod.§AnalysisbyFrequencyResponseofO.L.Systems54

TheminimumphasesystemL(w)isshowninthefigure,(1)Obtaintheopen-looptransferfunctionG(s)(2)determinethestabilitybyg(3)DeterminetheeffectofshiftingL(w)totherightby1dec.Solution.(1)(3)AftershiftingL(w)totherightby1dec(2)wc

increased→ts

decreasedAftershiftingnochange→s

nochangeStable55

MiddlebandTri-BandinFrequencyHigherbandLowerbandCorrespondingperformanceExpectation

L(w)Theabilityofanti-high-frequencynoiseOpen-loopgainKSystemtypevessCutofffrequencywc

PhasemargingDynamicPerformanceSteep,HighModerate,WideLow,SteepFrequencyBandTri-Banddoesnotgivethestepstodesignsystems,butitshowthewaytoadjustthesystemstructureforbetterperformance.§AnalysisbyFrequencyResponseofO.L.Systems56§NicholsChart§SystemAnalysisbyFrequencyResponseCharacteristicsofClosed-LoopSystems

57

§NicholsChartWhyClosed-Loopfrequencyresponses(1)Indicesofclosed-loopfrequencycharacteristicsareusedwidelyinpractice;(2)Theclosed-loopfrequencycharacteristicssystemareeasilyobtainedbyexperimentalmethod;(3)Thesystemperformancespecificationscanbeestimatedbytheclosed-loopfrequencyindices.58

VectorCorrelationbetweenOLandCLFrequencyResponses59

ConstantM/NcirclesConstantMcircle—AlocuscorrespondingtoaconstantLet

Rewrite:—ConstantMcirclesequation60

Let

Rewrite:—ConstantNcirclesequationConstantNcircle—Alocuscorrespondingtoaconstant61

ConstantM/Ncircles→Nicholschart62§5.7閉環(huán)頻率特性曲線的繪制(6)

Determine63Example9.7 StabilityusingtheNicholschartφωB

=-142°Mpω=+2.5dBωr=0.8φωr=-72°ωB

=1.339.6SystemBandwidthThebandwidthoftheclosed-loopsystemisanexcellentmeasurementoftherangeoffidelityofthesystem.ThespeedoftheresponsetoastepinputwillberoughlyproportionaltoωB,thusweseekalargebandwidthconsistentwithreasonablesystemcomponents.ThesystemsThesystemsBothsystemshaveζ=0.5.Thenaturalfrequencyis10and30forsystemsT3andT4,respectively.Thebandwidthis12.7and38.1forsystemsT3andT4,respectively.Bothsystemshavea16%overshoot,butT4hasapeaktimeof0.12secondcomparedto0.36forT3.Also,notethatthesettlingtimeforT4is0.27second,whilethesettlingtimeforT3is0.8second.Thesystemwithalargerbandwidthprovidesafasterresponse.9.8Designexample:RemotelycontrolledreconnaissancevehicleTheremotecontrolledvehicleThedesigngoal:goodoverallcontrolwithlowsteady-stateerrorandlow-overshootresponsetostepinputcommand,R(s)First,lowsteady-stateerrorWemayselectK=20,thusthetransferfunctionofopen-loopsystemis9.8Designexample:RemotelycontrolledreconnaissancevehicleK=20,20logMpω=12dBandMpω=3.98.Thephasemarginis15°.Wepredictanexcessiveovershootofapproximate61%.Toreducetheovershoottoastepinput,reducethegain.Tolimittheovershoot25%,ζ=0.4,thusrequireMpω=1.35and20lo

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論