




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省陽泉市2025年高三第二次檢測試題數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我國古代數學巨著《九章算術》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數是()A.2 B.3 C.4 D.12.已知數列滿足,則()A. B. C. D.3.為研究語文成績和英語成績之間是否具有線性相關關系,統計兩科成績得到如圖所示的散點圖(兩坐標軸單位長度相同),用回歸直線近似地刻畫其相關關系,根據圖形,以下結論最有可能成立的是()A.線性相關關系較強,b的值為1.25B.線性相關關系較強,b的值為0.83C.線性相關關系較強,b的值為-0.87D.線性相關關系太弱,無研究價值4.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.5.執行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.6.函數的圖象大致是()A. B.C. D.7.已知的垂心為,且是的中點,則()A.14 B.12 C.10 D.88.已知函數,則()A.2 B.3 C.4 D.59.已知數列,,,…,是首項為8,公比為得等比數列,則等于()A.64 B.32 C.2 D.410.函數的一個單調遞增區間是()A. B. C. D.11.已知集合,,則A. B.C. D.12.公元前世紀,古希臘哲學家芝諾發表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜的倍.當比賽開始后,若阿基里斯跑了米,此時烏龜便領先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規律,若阿基里斯和烏龜的距離恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米二、填空題:本題共4小題,每小題5分,共20分。13.設函數,,其中.若存在唯一的整數使得,則實數的取值范圍是_____.14.已知數列是各項均為正數的等比數列,若,則的最小值為________.15.設為等比數列的前項和,若,且,,成等差數列,則.16.袋中裝有兩個紅球、三個白球,四個黃球,從中任取四個球,則其中三種顏色的球均有的概率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,已知直線的直角坐標方程為,曲線的參數方程為(為參數),以直角坐標系原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線和直線的極坐標方程;(2)已知直線與曲線、相交于異于極點的點,若的極徑分別為,求的值.18.(12分)若函數為奇函數,且時有極小值.(1)求實數的值與實數的取值范圍;(2)若恒成立,求實數的取值范圍.19.(12分)是數列的前項和,且.(1)求數列的通項公式;(2)若,求數列中最小的項.20.(12分)為了保障全國第四次經濟普查順利進行,國家統計局從東部選擇江蘇,從中部選擇河北、湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點地區,然后再逐級確定普查區域,直到基層的普查小區,在普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記,由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經驗,在某普查小區,共有50家企事業單位,150家個體經營戶,普查情況如下表所示:普查對象類別順利不順利合計企事業單位401050個體經營戶10050150合計14060200(1)寫出選擇5個國家綜合試點地區采用的抽樣方法;(2)根據列聯表判斷是否有的把握認為“此普查小區的入戶登記是否順利與普查對象的類別有關”;(3)以該小區的個體經營戶為樣本,頻率作為概率,從全國個體經營戶中隨機選擇3家作為普查對象,入戶登記順利的對象數記為,寫出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82821.(12分)在直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)寫出直線的普通方程和曲線的直角坐標方程;(2)設直線與曲線相交于兩點,的頂點也在曲線上運動,求面積的最大值.22.(10分)已知函數,且.(1)求的解析式;(2)已知,若對任意的,總存在,使得成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
將問題轉化為等比數列問題,最終變為求解等比數列基本量的問題.【詳解】根據實際問題可以轉化為等比數列問題,在等比數列中,公比,前項和為,,,求的值.因為,解得,,解得.故選B.【點睛】本題考查等比數列的實際應用,難度較易.熟悉等比數列中基本量的計算,對于解決實際問題很有幫助.2.C【解析】
利用的前項和求出數列的通項公式,可計算出,然后利用裂項法可求出的值.【詳解】.當時,;當時,由,可得,兩式相減,可得,故,因為也適合上式,所以.依題意,,故.故選:C.【點睛】本題考查利用求,同時也考查了裂項求和法,考查計算能力,屬于中等題.3.B【解析】
根據散點圖呈現的特點可以看出,二者具有相關關系,且斜率小于1.【詳解】散點圖里變量的對應點分布在一條直線附近,且比較密集,故可判斷語文成績和英語成績之間具有較強的線性相關關系,且直線斜率小于1,故選B.【點睛】本題主要考查散點圖的理解,側重考查讀圖識圖能力和邏輯推理的核心素養.4.A【解析】
首先找出與面所成角,根據所成角所在三角形利用余弦定理求出所成角的余弦值,再根據同角三角函數關系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設中點為,連接,,可知,,同時易知,,所以面,故即為與面所成角,有,故.故選:A.【點睛】本題主要考查了空間幾何題中線面夾角的計算,屬于基礎題.5.B【解析】
由題意,框圖的作用是求分段函數的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數的值域,當;當綜上:.故選:B【點睛】本題考查了條件分支的程序框圖,考查了學生邏輯推理,分類討論,數學運算的能力,屬于基礎題.6.B【解析】
根據函數表達式,把分母設為新函數,首先計算函數定義域,然后求導,根據導函數的正負判斷函數單調性,對應函數圖像得到答案.【詳解】設,,則的定義域為.,當,,單增,當,,單減,則.則在上單增,上單減,.選B.【點睛】本題考查了函數圖像的判斷,用到了換元的思想,簡化了運算,同學們還可以用特殊值法等方法進行判斷.7.A【解析】
由垂心的性質,得到,可轉化,又即得解.【詳解】因為為的垂心,所以,所以,而,所以,因為是的中點,所以.故選:A【點睛】本題考查了利用向量的線性運算和向量的數量積的運算率,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.8.A【解析】
根據分段函數直接計算得到答案.【詳解】因為所以.故選:.【點睛】本題考查了分段函數計算,意在考查學生的計算能力.9.A【解析】
根據題意依次計算得到答案.【詳解】根據題意知:,,故,,.故選:.【點睛】本題考查了數列值的計算,意在考查學生的計算能力.10.D【解析】
利用同角三角函數的基本關系式、二倍角公式和輔助角公式化簡表達式,再根據三角函數單調區間的求法,求得的單調區間,由此確定正確選項.【詳解】因為,由單調遞增,則(),解得(),當時,D選項正確.C選項是遞減區間,A,B選項中有部分增區間部分減區間.故選:D【點睛】本小題考查三角函數的恒等變換,三角函數的圖象與性質等基礎知識;考查運算求解能力,推理論證能力,數形結合思想,應用意識.11.D【解析】
因為,,所以,,故選D.12.D【解析】
根據題意,是一個等比數列模型,設,由,解得,再求和.【詳解】根據題意,這是一個等比數列模型,設,所以,解得,所以.故選:D【點睛】本題主要考查等比數列的實際應用,還考查了建模解模的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據分段函數的解析式畫出圖像,再根據存在唯一的整數使得數形結合列出臨界條件滿足的關系式求解即可.【詳解】解:函數,且畫出的圖象如下:因為,且存在唯一的整數使得,故與在時無交點,,得;又,過定點又由圖像可知,若存在唯一的整數使得時,所以,存在唯一的整數使得所以.根據圖像可知,當時,恒成立.綜上所述,存在唯一的整數使得,此時故答案為:【點睛】本題主要考查了數形結合分析參數范圍的問題,需要根據題意分別分析定點右邊的整數點中為滿足條件的唯一整數,再數形結合列出時的不等式求的范圍.屬于難題.14.40【解析】
設等比數列的公比為,根據,可得,因為,根據均值不等式,即可求得答案.【詳解】設等比數列的公比為,,,等比數列的各項為正數,,,當且僅當,即時,取得最小值.故答案為:.【點睛】本題主要考查了求數列值的最值問題,解題關鍵是掌握等比數列通項公式和靈活使用均值不等式,考查了分析能力和計算能力,屬于中檔題.15..【解析】試題分析:∵,,成等差數列,∴,又∵等比數列,∴.考點:等差數列與等比數列的性質.【名師點睛】本題主要考查等差與等比數列的性質,屬于容易題,在解題過程中,需要建立關于等比數列基本量的方程即可求解,考查學生等價轉化的思想與方程思想.16.【解析】
基本事件總數n126,其中三種顏色的球都有包含的基本事件個數m72,由此能求出其中三種顏色的球都有的概率.【詳解】解:袋中有2個紅球,3個白球和4個黃球,從中任取4個球,基本事件總數n126,其中三種顏色的球都有,可能是2個紅球,1個白球和1個黃球或1個紅球,2個白球和1個黃球或1個紅球,1個白球和2個黃球,所以包含的基本事件個數m72,∴其中三種顏色的球都有的概率是p.故答案為:.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),.(2)【解析】
(1)先將曲線的參數方程化為直角坐標方程,即可代入公式化為極坐標;根據直線的直角坐標方程,求得傾斜角,即可得極坐標方程.(2)將直線的極坐標方程代入曲線、可得,進而代入可得的值.【詳解】(1)曲線的參數方程為(為參數),消去得,把,代入得,從而得的極坐標方程為,∵直線的直角坐標方程為,其傾斜角為,∴直線的極坐標方程為.(2)將代入曲線的極坐標方程分別得到,則.【點睛】本題考查了參數方程化為普通方程的方法,直角坐標方程化為極坐標方程的方法,極坐標的幾何意義,屬于中檔題.18.(1),;(2)【解析】
(1)由奇函數可知在定義域上恒成立,由此建立方程,即可求出實數的值;對函數進行求導,,通過導數求出,若,則恒成立不符合題意,當,可證明,此時時有極小值.(2)可知,進而得到,令,通過導數可知在上為單調減函數,由可得,從而可求實數的取值范圍.【詳解】(1)由函數為奇函數,得在定義域上恒成立,所以,化簡可得,所以.則,令,則.故當時,;當時,,故在上遞減,在上遞增,若,則恒成立,單調遞增,無極值點;所以,解得,取,則又函數的圖象在區間上連續不間斷,故由函數零點存在性定理知在區間上,存在為函數的零點,為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構造函數,所以,當時,,即恒成立,故在上為單調減函數,其中.則可轉化為,故,由,設,可得當時,則在上遞增,故.綜上,的取值范圍是.【點睛】本題考查了利用導數研究函數的單調性,考查了利用導數求函數的最值,考查了奇函數的定義,考查了轉化的思想.對于恒成立的問題,常轉化為求的最小值,使;對于恒成立的問題,常轉化為求的最大值,使.19.(1);(2).【解析】
(1)由可得出,兩式作差可求得數列的通項公式;(2)求得,利用數列的單調性的定義判斷數列的單調性,由此可求得數列的最小項的值.【詳解】(1)對任意的,由得,兩式相減得,因此,數列的通項公式為;(2)由(1)得,則.當時,,即,;當時,,即,.所以,數列的最小項為.【點睛】本題考查利用與的關系求通項,同時也考查了利用數列的單調性求數列中的最小項,考查推理能力與計算能力,屬于中等題.20.(1)分層抽樣,簡單隨機抽樣(抽簽亦可)(2)有(3)分布列見解析,【解析】
(1)根據題意可以選用分層抽樣法,或者簡單隨機抽樣法.(2)由已知條件代入公式計算出結果,進而可以得到結果.(3)由已知條件計算出的分布列,進而求出的數學期望.【詳解】(1)分層抽樣,簡單隨機抽樣(抽簽亦可).(2)將
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年綠色建筑材料市場推廣策略與政策支持體系優化研究報告
- 2025年零售行業會員制度創新策略深度解析報告
- 2025年環保技術創新應用現狀與市場趨勢分析報告
- 2025年建筑施工安全管理信息化對施工現場安全責任的界定報告
- 2025年數字貨幣對金融市場波動的影響及對策研究報告
- 中國克林霉素棕櫚酸酯項目商業計劃書
- 體育研究開題報告
- 2025年污水處理設備市場調研報告
- 汽車故障項目安全風險評價報告
- 中國激素類添加劑項目投資計劃書
- 金川集團公司招聘筆試題目
- 咳嗽穴位貼敷治療
- 口腔科醫院感染預防與控制護理課件
- 民法典合同編律師宣講課件
- 基層衛生崗位練兵和技能競賽復習題-社區護理
- 企業法治知識講座
- 2024年中國鐵路南寧局集團有限公司招聘筆試參考題庫附帶答案詳解
- 1萬噸城市生活污水處理廠A2O工藝的設計
- 信息技術基礎 課件 張志紅第3-5章 電子表格處理、演示文稿制作、計算機網絡基礎
- 兒童自閉癥的音樂治療方法
- 勞動用工風險分析與防范課件
評論
0/150
提交評論