江蘇省蘇州市震澤中學2025屆高三畢業班3月適應性線上測試(一)數學試題_第1頁
江蘇省蘇州市震澤中學2025屆高三畢業班3月適應性線上測試(一)數學試題_第2頁
江蘇省蘇州市震澤中學2025屆高三畢業班3月適應性線上測試(一)數學試題_第3頁
江蘇省蘇州市震澤中學2025屆高三畢業班3月適應性線上測試(一)數學試題_第4頁
江蘇省蘇州市震澤中學2025屆高三畢業班3月適應性線上測試(一)數學試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省蘇州市震澤中學2025屆高三畢業班3月適應性線上測試(一)數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知邊長為4的菱形,,為的中點,為平面內一點,若,則()A.16 B.14 C.12 D.82.等比數列若則()A.±6 B.6 C.-6 D.3.阿基米德(公元前287年—公元前212年),偉大的古希臘哲學家、數學家和物理學家,他死后的墓碑上刻著一個“圓柱容球”的立體幾何圖形,為紀念他發現“圓柱內切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內切球體積為()A. B. C. D.4.我國數學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數可以表示為兩個素數(即質數)的和”,如,.在不超過20的素數中,隨機選取兩個不同的數,其和等于20的概率是()A. B. C. D.以上都不對5.已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設橢圓和雙曲線的離心率分別為,則的關系為()A. B.C. D.6.雙曲線的漸近線方程是()A. B. C. D.7.已知三棱柱()A. B. C. D.8.三棱柱中,底面邊長和側棱長都相等,,則異面直線與所成角的余弦值為()A. B. C. D.9.如圖是國家統計局于2020年1月9日發布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環比)根據該折線圖,下列結論錯誤的是()A.2019年12月份,全國居民消費價格環比持平B.2018年12月至2019年12月全國居民消費價格環比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格10.如圖,平面ABCD,ABCD為正方形,且,E,F分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.11.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.12.設函數的導函數,且滿足,若在中,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設是公差不為0的等差數列的前n項和,且,則______.14.已知不等式組所表示的平面區域為,則區域的外接圓的面積為______.15.已知是等比數列,且,,則__________,的最大值為__________.16.已知數列的首項,函數在上有唯一零點,則數列|的前項和__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(Ⅰ)當時,求曲線在處的切線方程;(Ⅱ)求函數在上的最小值;(Ⅲ)若函數,當時,的最大值為,求證:.18.(12分)在平面直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,直線交曲線于兩點,為中點.(1)求曲線的直角坐標方程和點的軌跡的極坐標方程;(2)若,求的值.19.(12分)已知函數,將的圖象向左移個單位,得到函數的圖象.(1)若,求的單調區間;(2)若,的一條對稱軸是,求在的值域.20.(12分)已知動圓過定點,且與直線相切,動圓圓心的軌跡為,過作斜率為的直線與交于兩點,過分別作的切線,兩切線的交點為,直線與交于兩點.(1)證明:點始終在直線上且;(2)求四邊形的面積的最小值.21.(12分)已知函數.(1)若曲線的切線方程為,求實數的值;(2)若函數在區間上有兩個零點,求實數的取值范圍.22.(10分)在直角坐標系中,直線的參數方程為(為參數,).在以為極點,軸正半軸為極軸的極坐標中,曲線:.(1)當時,求與的交點的極坐標;(2)直線與曲線交于,兩點,線段中點為,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

取中點,可確定;根據平面向量線性運算和數量積的運算法則可求得,利用可求得結果.【詳解】取中點,連接,,,即.,,,則.故選:.【點睛】本題考查平面向量數量積的求解問題,涉及到平面向量的線性運算,關鍵是能夠將所求向量進行拆解,進而利用平面向量數量積的運算性質進行求解.2.B【解析】

根據等比中項性質代入可得解,由等比數列項的性質確定值即可.【詳解】由等比數列中等比中項性質可知,,所以,而由等比數列性質可知奇數項符號相同,所以,故選:B.【點睛】本題考查了等比數列中等比中項的簡單應用,注意項的符號特征,屬于基礎題.3.D【解析】

設圓柱的底面半徑為,則其母線長為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結合題中的結論即可求出該圓柱的內切球體積.【詳解】設圓柱的底面半徑為,則其母線長為,因為圓柱的表面積公式為,所以,解得,因為圓柱的體積公式為,所以,由題知,圓柱內切球的體積是圓柱體積的,所以所求圓柱內切球的體積為.故選:D【點睛】本題考查圓柱的軸截面及表面積和體積公式;考查運算求解能力;熟練掌握圓柱的表面積和體積公式是求解本題的關鍵;屬于中檔題.4.A【解析】

首先確定不超過的素數的個數,根據古典概型概率求解方法計算可得結果.【詳解】不超過的素數有,,,,,,,,共個,從這個素數中任選個,有種可能;其中選取的兩個數,其和等于的有,,共種情況,故隨機選出兩個不同的數,其和等于的概率.故選:.【點睛】本題考查古典概型概率問題的求解,屬于基礎題.5.A【解析】

設橢圓的半長軸長為,雙曲線的半長軸長為,根據橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【詳解】設橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設,在中,由余弦定理得:,化簡得,即.故選:A【點睛】本題主要考查橢圓,雙曲線的定義和性質以及余弦定理的應用,還考查了運算求解的能力,屬于中檔題.6.C【解析】

根據雙曲線的標準方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點睛】本題考查雙曲線的漸近線方程的求法,是基礎題,解題時要認真審題,注意雙曲線的簡單性質的合理運用.7.C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側面BCC1B1內,矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=8.B【解析】

設,,,根據向量線性運算法則可表示出和;分別求解出和,,根據向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設棱長為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項:【點睛】本題考查異面直線所成角的求解,關鍵是能夠通過向量的線性運算、數量積運算將問題轉化為向量夾角的求解問題.9.D【解析】

先對圖表數據的分析處理,再結簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環比是負的,所以B錯誤;設2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D【點睛】此題考查了對圖表數據的分析處理能力及進行簡單的合情推理,屬于中檔題.10.C【解析】

分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設.則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學生對這些知識的理解掌握水平.11.B【解析】

選B.考點:圓心坐標12.D【解析】

根據的結構形式,設,求導,則,在上是增函數,再根據在中,,得到,,利用余弦函數的單調性,得到,再利用的單調性求解.【詳解】設,所以,因為當時,,即,所以,在上是增函數,在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導數與函數的單調性,還考查了運算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.18【解析】

將已知已知轉化為的形式,化簡后求得,利用等差數列前公式化簡,由此求得表達式的值.【詳解】因為,所以.故填:.【點睛】本題考查等差數列基本量的計算,考查等差數列的性質以及求和,考查運算求解能力,屬于基礎題.14.【解析】

先作可行域,根據解三角形得外接圓半徑,最后根據圓面積公式得結果.【詳解】由題意作出區域,如圖中陰影部分所示,易知,故,又,設的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.【點睛】線性規劃問題,首先明確可行域對應的是封閉區域還是開放區域、分界線是實線還是虛線,其次確定目標函數的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離、可行域面積、可行域外接圓等等,最后結合圖形確定目標函數最值取法、值域范圍.15.5【解析】,即的最大值為16.【解析】

由函數為偶函數,可得唯一零點為,代入可得數列的遞推關系式,再進行配湊轉換為等比數列,最后運用分部求和可得答案.【詳解】因為為偶函數,在上有唯一零點,所以,∴,∴,∴為首項為2,公比為2的等比數列.所以,.故答案為:【點睛】本題主要考查了函數的奇偶性和函數的零點,同時也考查了由遞推關系式求數列的通項,考查了數列的分部求和,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)見解析;(Ⅲ)見解析.【解析】試題分析:(Ⅰ)由題,所以故,,代入點斜式可得曲線在處的切線方程;(Ⅱ)由題(1)當時,在上單調遞增.則函數在上的最小值是(2)當時,令,即,令,即(i)當,即時,在上單調遞增,所以在上的最小值是(ii)當,即時,由的單調性可得在上的最小值是(iii)當,即時,在上單調遞減,在上的最小值是(Ⅲ)當時,令,則是單調遞減函數.因為,,所以在上存在,使得,即討論可得在上單調遞增,在上單調遞減.所以當時,取得最大值是因為,所以由此可證試題解析:(Ⅰ)因為函數,且,所以,所以所以,所以曲線在處的切線方程是,即(Ⅱ)因為函數,所以(1)當時,,所以在上單調遞增.所以函數在上的最小值是(2)當時,令,即,所以令,即,所以(i)當,即時,在上單調遞增,所以在上的最小值是(ii)當,即時,在上單調遞減,在上單調遞增,所以在上的最小值是(iii)當,即時,在上單調遞減,所以在上的最小值是綜上所述,當時,在上的最小值是當時,在上的最小值是當時,在上的最小值是(Ⅲ)因為函數,所以所以當時,令,所以是單調遞減函數.因為,,所以在上存在,使得,即所以當時,;當時,即當時,;當時,所以在上單調遞增,在上單調遞減.所以當時,取得最大值是因為,所以因為,所以所以18.(1),;(2)或【解析】

(1)根據曲線的參數方程消去參數,可得曲線的直角坐標方程,再由,,可得點的軌跡的極坐標方程;(2)將曲線極坐標方程求,與直線極坐標方程聯立,消去,得到關于的二次方程,由的幾何意義可求出,而(1)可知,然后列方程可求出的值.【詳解】(1)曲線的直角坐標方程為,圓的圓心為,設,所以,則由,即為點軌跡的極坐標方程.(2)曲線的極坐標方程為,將與曲線的極坐標方程聯立得,,設,所以,,由,即,令,上述方程可化為,解得.由,所以,即或.【點睛】此題考查參數方程與普通方程的互化,極坐標方程與直角坐標方程的互化,利用極坐標求點的軌跡方程,考查運算求解能力,考查數形結合思想,屬于中檔題.19.(1)增區間為,減區間為;(2).【解析】

(1)由題意利用三角函數圖象變換規律求得的解析式,然后利用余弦函數的單調性,得出結論;(2)由題意利用余弦函數的圖象的對稱性求得,再根據余弦函數的定義域和值域,得出結論.【詳解】由題意得(1)向左平移個單位得到,增區間:解不等式,解得,減區間:解不等式,解得.綜上可得,的單調增區間為,減區間為;(2)由題易知,,因為的一條對稱軸是,所以,,解得,.又因為,所以,即.因為,所以,則,所以在的值域是.【點睛】本題主要考查三角函數圖象變換規律,余弦函數圖象的對稱性,余弦函數的單調性和值域,屬于中檔題.20.(1)見解析(2)最小值為1.【解析】

(1)根據拋物線的定義,判斷出的軌跡為拋物線,并由此求得軌跡的方程.設出兩點的坐標,利用導數求得切線的方程,由此求得點的坐標.寫出直線的方程,聯立直線的方程和曲線的方程,根據韋達定理求得點的坐標,并由此判斷出始終在直線上,且.(2)設直線的傾斜角為,求得的表達式,求得的表達式,由此求得四邊形的面積的表達式進而求得四邊形的面積的最小值.【詳解】(1)∵動圓過定點,且與直線相切,∴動圓圓心到定點和定直線的距離相等,∴動圓圓心的軌跡是以為焦點的拋物線,∴軌跡的方程為:,設,∴直線的方程為:,即:①,同理,直線的方程為:②,由①②可得:,直線方程為:,聯立可得:,,∴點始終在直線上且;(2)設直線的傾斜角為,由(1)可得:,,∴四邊形的面積為:,當且僅當或,即時取等號,∴四邊形的面積的最小值為1.【點睛】本小題主要考查動點軌跡方程的求法,考查直線和拋物線的位置關系,考查拋物線中四邊形面積的最值的計算,考查運算求解能力,屬于中檔題.21.(1);(2)或【解析】

(1)根據解析式求得導函數,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論