2025屆安徽省蕪湖市重點中學第二學期高三第一次考試數學試題試卷_第1頁
2025屆安徽省蕪湖市重點中學第二學期高三第一次考試數學試題試卷_第2頁
2025屆安徽省蕪湖市重點中學第二學期高三第一次考試數學試題試卷_第3頁
2025屆安徽省蕪湖市重點中學第二學期高三第一次考試數學試題試卷_第4頁
2025屆安徽省蕪湖市重點中學第二學期高三第一次考試數學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省蕪湖市重點中學第二學期高三第一次考試數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,命題“存在,使方程有實根”的否定是()A.任意,使方程無實根B.任意,使方程有實根C.存在,使方程無實根D.存在,使方程有實根2.要得到函數的導函數的圖像,只需將的圖像()A.向右平移個單位長度,再把各點的縱坐標伸長到原來的3倍B.向右平移個單位長度,再把各點的縱坐標縮短到原來的倍C.向左平移個單位長度,再把各點的縱坐標縮短到原來的倍D.向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍3.已知函數滿足=1,則等于()A.- B. C.- D.4.已知,,由程序框圖輸出的為()A.1 B.0 C. D.5.已知函數,,若對任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.6.等比數列的前項和為,若,,,,則()A. B. C. D.7.已知函數,對任意的,,當時,,則下列判斷正確的是()A. B.函數在上遞增C.函數的一條對稱軸是 D.函數的一個對稱中心是8.復數(i是虛數單位)在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.在中,,,,點滿足,則等于()A.10 B.9 C.8 D.710.已知,則的值構成的集合是()A. B. C. D.11.已知函數,則()A.2 B.3 C.4 D.512.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積與圓錐的體積的比值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,的系數是__________.(用數字填寫答案)14.函數的定義域是___________.15.已知為偶函數,當時,,則__________.16.關于函數有下列四個命題:①函數在上是增函數;②函數的圖象關于中心對稱;③不存在斜率小于且與函數的圖象相切的直線;④函數的導函數不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點.(1)求證:平面平面;(2)點在線段上,且,求平面與平面所成的銳二面角的余弦值.18.(12分)萬眾矚目的第14屆全國冬季運動運會(簡稱“十四冬”)于2020年2月16日在呼倫貝爾市盛大開幕,期間正值我市學校放寒假,寒假結束后,某校工會對全校100名教職工在“十四冬”期間每天收看比賽轉播的時間作了一次調查,得到如圖頻數分布直方圖:(1)若將每天收看比賽轉播時間不低于3小時的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請根據頻率分布直方圖補全列聯表;并判斷能否有的把握認為該校教職工是否為“冰雪迷”與“性別”有關;(2)在全校“冰雪迷”中按性別分層抽樣抽取6名,再從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數為,求的分布列與數學期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,19.(12分)在直角坐標系中,曲線的參數方程為(為參數),以原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程與曲線的直角坐標方程;(2)設為曲線上位于第一,二象限的兩個動點,且,射線交曲線分別于,求面積的最小值,并求此時四邊形的面積.20.(12分)已知,均為正數,且.證明:(1);(2).21.(12分)正項數列的前n項和Sn滿足:(1)求數列的通項公式;(2)令,數列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn<.22.(10分)已知數列是各項均為正數的等比數列,數列為等差數列,且,,.(1)求數列與的通項公式;(2)求數列的前項和;(3)設為數列的前項和,若對于任意,有,求實數的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

只需將“存在”改成“任意”,有實根改成無實根即可.【詳解】由特稱命題的否定是全稱命題,知“存在,使方程有實根”的否定是“任意,使方程無實根”.故選:A【點睛】本題考查含有一個量詞的命題的否定,此類問題要注意在兩個方面作出變化:1.量詞,2.結論,是一道基礎題.2、D【解析】

先求得,再根據三角函數圖像變換的知識,選出正確選項.【詳解】依題意,所以由向左平移個單位長度,再把各點的縱坐標伸長到原來的3倍得到的圖像.故選:D【點睛】本小題主要考查復合函數導數的計算,考查誘導公式,考查三角函數圖像變換,屬于基礎題.3、C【解析】

設的最小正周期為,可得,則,再根據得,又,則可求出,進而可得.【詳解】解:設的最小正周期為,因為,所以,所以,所以,又,所以當時,,,因為,整理得,因為,,,則所以.故選:C.【點睛】本題考查三角形函數的周期性和對稱性,考查學生分析能力和計算能力,是一道難度較大的題目.4、D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點:1、程序框圖;2、定積分.5、C【解析】

對任意的總有恒成立,因為,對恒成立,可得,令,可得,結合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當,當,,故令,得當時,當,當時,故選:C.【點睛】本題主要考查了根據不等式恒成立求最值問題,解題關鍵是掌握不等式恒成立的解法和導數求函數單調性的解法,考查了分析能力和計算能力,屬于難題.6、D【解析】試題分析:由于在等比數列中,由可得:,又因為,所以有:是方程的二實根,又,,所以,故解得:,從而公比;那么,故選D.考點:等比數列.7、D【解析】

利用輔助角公式將正弦函數化簡,然后通過題目已知條件求出函數的周期,從而得到,即可求出解析式,然后利用函數的性質即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,,函數,對于A,,故A錯誤;對于B,由,解得,故B錯誤;對于C,當時,,故C錯誤;對于D,由,故D正確.故選:D【點睛】本題考查了簡單三角恒等變換以及三角函數的性質,熟記性質是解題的關鍵,屬于基礎題.8、B【解析】

利用復數的四則運算以及幾何意義即可求解.【詳解】解:,則復數(i是虛數單位)在復平面內對應的點的坐標為:,位于第二象限.故選:B.【點睛】本題考查了復數的四則運算以及復數的幾何意義,屬于基礎題.9、D【解析】

利用已知條件,表示出向量,然后求解向量的數量積.【詳解】在中,,,,點滿足,可得則==【點睛】本題考查了向量的數量積運算,關鍵是利用基向量表示所求向量.10、C【解析】

對分奇數、偶數進行討論,利用誘導公式化簡可得.【詳解】為偶數時,;為奇數時,,則的值構成的集合為.【點睛】本題考查三角式的化簡,誘導公式,分類討論,屬于基本題.11、A【解析】

根據分段函數直接計算得到答案.【詳解】因為所以.故選:.【點睛】本題考查了分段函數計算,意在考查學生的計算能力.12、B【解析】

計算求半徑為,再計算球體積和圓錐體積,計算得到答案.【詳解】如圖所示:設球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學生的計算能力和空間想象能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據組合的知識,結合組合數的公式,可得結果.【詳解】由題可知:項來源可以是:(1)取1個,4個(2)取2個,3個的系數為:故答案為:【點睛】本題主要考查組合的知識,熟悉二項式定理展開式中每一項的來源,實質上每個因式中各取一項的乘積,轉化為組合的知識,屬中檔題.14、【解析】

由于偶次根式中被開方數非負,對數的真數要大于零,然后解不等式組可得答案.【詳解】解:由題意得,,解得,所以,故答案為:【點睛】此題考查函數定義域的求法,屬于基礎題.15、【解析】

由偶函數的性質直接求解即可【詳解】.故答案為【點睛】本題考查函數的奇偶性,對數函數的運算,考查運算求解能力16、①②③【解析】

由單調性、對稱性概念、導數的幾何意義、導數與極值的關系進行判斷.【詳解】函數的定義域是,由于,在上遞增,∴函數在上是遞增,①正確;,∴函數的圖象關于中心對稱,②正確;,時取等號,∴③正確;,設,則,顯然是即的極小值點,④錯誤.故答案為:①②③.【點睛】本題考查函數的單調性、對稱性,考查導數的幾何意義、導數與極值,解題時按照相關概念判斷即可,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)根據等邊三角形的性質證得,根據面面垂直的性質定理,證得底面,由此證得,結合證得平面,由此證得:平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成的銳二面角的余弦值.【詳解】(1)證明:∵為等邊三角形,為的中點,∴∵平面底面,平面底面,∴底面平面,∴又由題意可知為正方形,又,∴平面平面,∴平面平面(2)如圖建立空間直角坐標系,則,,,由已知,得,設平面的法向量為,則令,則,∴由(1)知平面的法向量可取為∴∴平面與平面所成的銳二面角的余弦值為.【點睛】本小題主要考查面面垂直的判定定理和性質定理,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)列聯表見解析,有把握;(2)分布列見解析,.【解析】

(1)根據頻率分布直方圖補全列聯表,求出,從而有的把握認為該校教職工是否為“冰雪迷”與“性別”有關.(2)在全校“冰雪迷”中按性別分層抽樣抽取6名,則抽中男教工:人,抽中女教工:人,從這6名“冰雪迷”中選取2名作冰雪運動知識講座.記其中女職工的人數為,則的可能取值為0,1,2,分別求出相應的概率,由此能求出的分布列和數學期望.【詳解】解:(1)由題意得下表:男女合計冰雪迷402060非冰雪迷202040合計6040100的觀測值為所以有的把握認為該校教職工是“冰雪迷”與“性別”有關.(2)由題意知抽取的6名“冰雪迷”中有4名男職工,2名女職工,所以的可能取值為0,1,2.且,,,所以的分布列為012【點睛】本題考查獨立性檢驗的應用,考查離散型隨機變量的分布列、數學期望的求法,考查古典概型、排列組合、頻率分布直方圖的性質等基礎知識,考查運算求解能力,屬于中檔題.19、(1);(2)面積的最小值為;四邊形的面積為【解析】

(1)將曲線消去參數即可得到的普通方程,將,代入曲線的極坐標方程即可;(2)由(1)得曲線的極坐標方程,設,,,利用方程可得,再利用基本不等式得,即可得,根據題意知,進而可得四邊形的面積.【詳解】(1)由曲線的參數方程為(為參數)消去參數得曲線的極坐標方程為,即,所以,曲線的直角坐標方程.(2)依題意得的極坐標方程為設,,,則,,故,當且僅當(即)時取“=”,故,即面積的最小值為.此時,故所求四邊形的面積為.【點睛】本題考查了極坐標方程化為直角坐標方程、參數方程化為普通方程、點到直線的距離公式、三角函數的單調性,考查了推理能力與計算能力,屬于中檔題.20、(1)見解析(2)見解析【解析】

(1)由進行變換,得到,兩邊開方并化簡,證得不等式成立.(2)將化為,然后利用基本不等式,證得不等式成立.【詳解】(1),兩邊加上得,即,當且僅當時取等號,∴.(2).當且僅當時取等號.【點睛】本小題主要考查利用基本不等式證明不等式成立,考查化歸與轉化的數學思想方法,屬于中檔題.21、(1)(2)見解析【解析】

(1)因為數列的前項和滿足:,所以當時,,即解得或,因為數列都是正項,所以,因為,所以,解得或,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論