




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
內蒙古自治區巴彥淖爾市2025屆高考數學試題模擬題及解析(全國卷Ⅲ:)注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的實軸長為,離心率為,、分別為雙曲線的左、右焦點,點在雙曲線上運動,若為銳角三角形,則的取值范圍是()A. B. C. D.2.設,則關于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實軸在軸上的雙曲線 D.實軸在軸上的雙曲線3.關于函數,有下述三個結論:①函數的一個周期為;②函數在上單調遞增;③函數的值域為.其中所有正確結論的編號是()A.①② B.② C.②③ D.③4.已知,如圖是求的近似值的一個程序框圖,則圖中空白框中應填入A. B.C. D.5.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.6.已知函數的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.7.直角坐標系中,雙曲線()與拋物線相交于、兩點,若△是等邊三角形,則該雙曲線的離心率()A. B. C. D.8.已知角的終邊經過點,則的值是A.1或 B.或 C.1或 D.或9.在復平面內,復數(為虛數單位)的共軛復數對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知,,則的大小關系為()A. B. C. D.11.已知集合,將集合的所有元素從小到大一次排列構成一個新數列,則()A.1194 B.1695 C.311 D.109512.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,內角A,B,C的對邊分別是a,b,c,且,,,則_______.14.某市高三理科學生有名,在一次調研測試中,數學成績服從正態分布,已知,若按成績分層抽樣的方式取份試卷進行分析,則應從分以上的試卷中抽取的份數為__________.15.某校高三年級共有名學生參加了數學測驗(滿分分),已知這名學生的數學成績均不低于分,將這名學生的數學成績分組如下:,,,,,,得到的頻率分布直方圖如圖所示,則下列說法中正確的是________(填序號).①;②這名學生中數學成績在分以下的人數為;③這名學生數學成績的中位數約為;④這名學生數學成績的平均數為.16.直線是圓:與圓:的公切線,并且分別與軸正半軸,軸正半軸相交于,兩點,則的面積為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個特征向量.18.(12分)已知函數.(1)求不等式的解集;(2)若關于的不等式在區間內無解,求實數的取值范圍.19.(12分)如圖,設A是由個實數組成的n行n列的數表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實數,且aij{1,-1}.記S(n,n)為所有這樣的數表構成的集合.對于,記ri(A)為A的第i行各數之積,cj(A)為A的第j列各數之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請寫出一個AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說明理由;(Ⅲ)給定正整數n,對于所有的AS(n,n),求l(A)的取值集合.20.(12分)我國在2018年社保又出新的好消息,之前流動就業人員跨地區就業后,社保轉移接續的手續往往比較繁瑣,費時費力.社保改革后將簡化手續,深得流動就業人員的贊譽.某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續所需時間(天)與人數的頻數分布表:時間人數156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續所需時間與是否流動人員的列聯表,并判斷是否有95%的把握認為“辦理社保手續所需時間與是否流動人員”有關.列聯表如下流動人員非流動人員總計辦理社保手續所需時間不超過4天辦理社保手續所需時間超過4天60總計21090300(2)為了改進工作作風,提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為的人數為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87921.(12分)已知函數,.(1)討論的單調性;(2)當時,證明:.22.(10分)已知函數.(1)求不等式的解集;(2)若函數的最大值為,且,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結合即可解決.【詳解】由已知可得,,所以,從而雙曲線方程為,不妨設點在雙曲線右支上運動,則,當時,此時,所以,,所以;當軸時,,所以,又為銳角三角形,所以.故選:A.【點睛】本題考查雙曲線的性質及其應用,本題的關鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.2.C【解析】
根據條件,方程.即,結合雙曲線的標準方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示實軸在y軸上的雙曲線,
故選C.【點睛】本題考查雙曲線的標準方程的特征,依據條件把已知的曲線方程化為是關鍵.3.C【解析】
①用周期函數的定義驗證.②當時,,,再利用單調性判斷.③根據平移變換,函數的值域等價于函數的值域,而,當時,再求值域.【詳解】因為,故①錯誤;當時,,所以,所以在上單調遞增,故②正確;函數的值域等價于函數的值域,易知,故當時,,故③正確.故選:C.【點睛】本題考查三角函數的性質,還考查推理論證能力以及分類討論思想,屬于中檔題.4.C【解析】
由于中正項與負項交替出現,根據可排除選項A、B;執行第一次循環:,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時不成立,;執行第二次循環:由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時不成立,;執行第三次循環:由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應填入,故選C.5.B【解析】
設,則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結果.【詳解】設,則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應用,屬于基礎題.6.D【解析】
運用輔助角公式,化簡函數的解析式,由對稱軸的方程,求得的值,得出函數的解析式,集合正弦函數的最值,即可求解,得到答案.【詳解】由題意,函數為輔助角,由于函數的對稱軸的方程為,且,即,解得,所以,又由,所以函數必須取得最大值和最小值,所以可設,,所以,當時,的最小值,故選D.【點睛】本題主要考查了正弦函數的圖象與性質,其中解答中利用三角恒等變換的公式,化簡函數的解析式,合理利用正弦函數的對稱性與最值是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.7.D【解析】
根據題干得到點A坐標為,代入拋物線得到坐標為,再將點代入雙曲線得到離心率.【詳解】因為三角形OAB是等邊三角形,設直線OA為,設點A坐標為,代入拋物線得到x=2b,故點A的坐標為,代入雙曲線得到故答案為:D.【點睛】求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得(的取值范圍).8.B【解析】
根據三角函數的定義求得后可得結論.【詳解】由題意得點與原點間的距離.①當時,,∴,∴.②當時,,∴,∴.綜上可得的值是或.故選B.【點睛】利用三角函數的定義求一個角的三角函數值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標x,縱坐標y,該點到原點的距離r,然后再根據三角函數的定義求解即可.9.D【解析】
將復數化簡得,,即可得到對應的點為,即可得出結果.【詳解】,對應的點位于第四象限.故選:.【點睛】本題考查復數的四則運算,考查共軛復數和復數與平面內點的對應,難度容易.10.D【解析】
由指數函數的圖像與性質易得最小,利用作差法,結合對數換底公式及基本不等式的性質即可比較和的大小關系,進而得解.【詳解】根據指數函數的圖像與性質可知,由對數函數的圖像與性質可知,,所以最小;而由對數換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點睛】本題考查了指數式與對數式的化簡變形,對數換底公式及基本不等式的簡單應用,作差法比較大小,屬于中檔題.11.D【解析】
確定中前35項里兩個數列中的項數,數列中第35項為70,這時可通過比較確定中有多少項可以插入這35項里面即可得,然后可求和.【詳解】時,,所以數列的前35項和中,有三項3,9,27,有32項,所以.故選:D.【點睛】本題考查數列分組求和,掌握等差數列和等比數列前項和公式是解題基礎.解題關鍵是確定數列的前35項中有多少項是中的,又有多少項是中的.12.B【解析】
三視圖對應的幾何體為如圖所示的幾何體,利用割補法可求其體積.【詳解】根據三視圖可得原幾何體如圖所示,它是一個圓柱截去上面一塊幾何體,把該幾何體補成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【點睛】本題考查三視圖以及不規則幾何體的體積,復原幾何體時注意三視圖中的點線關系與幾何體中的點、線、面的對應關系,另外,不規則幾何體的體積可用割補法來求其體積,本題屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.9【解析】
已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得結果.【詳解】由余弦定理和,可得,得,由,,,由正弦定理,得.故答案為:.【點睛】本題考查正余弦定理在解三角形中的應用,難度一般.14.【解析】
由題意結合正態分布曲線可得分以上的概率,乘以可得.【詳解】解:,所以應從分以上的試卷中抽取份.故答案為:.【點睛】本題考查正態分布曲線,屬于基礎題.15.②③【解析】
由頻率分布直方圖可知,解得,故①不正確;這名學生中數學成績在分以下的人數為,故②正確;設這名學生數學成績的中位數為,則,解得,故③正確;④這名學生數學成績的平均數為,故④不正確.綜上,說法正確的序號是②③.16.【解析】
根據題意畫出圖形,設,利用三角形相似求得的值,代入三角形的面積公式,即可求解.【詳解】如圖所示,設,由與相似,可得,解得,再由與相似,可得,解得,由三角形的面積公式,可得的面積為.故答案為:.【點睛】本題主要考查了直線與圓的位置關系的應用,以及三角形相似的應用,著重考查了數形結合思想,以及推理與運算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.特征值為1,特征向量為.【解析】
設出矩陣M結合矩陣運算和矩陣相等的條件可求矩陣M,然后利用可求特征值的另一個特征向量.【詳解】設矩陣M=,則AM=,所以,解得,所以M=,則矩陣M的特征方程為,解得,即特征值為1,設特征值的特征向量為,則,即,解得x=0,所以屬于特征值的的一個特征向量為.【點睛】本題主要考查矩陣的運算及特征量的求解,矩陣運算的關鍵是明確其運算規則,側重考查數學運算的核心素養.18.(1);(2).【解析】
(1)只需分,,三種情況討論即可;(2)在區間上恒成立,轉化為,只需求出即可.【詳解】(1)當時,,此時不等式無解;當時,,由得;當時,,由得,綜上,不等式的解集為;(2)依題意,在區間上恒成立,則,當時,;當時,,所以當時,,由得或,所以實數的取值范圍為.【點睛】本題考查絕對值不等式的解法、不等式恒成立問題,考查學生分類討論與轉化與化歸的思想,是一道基礎題.19.(Ⅰ)答案見解析;(Ⅱ)不存在,理由見解析;(Ⅲ)【解析】
(Ⅰ)可取第一行都為-1,其余的都取1,即滿足題意;(Ⅱ)用反證法證明:假設存在,得出矛盾,從而證明結論;(Ⅲ)通過分析正確得出l(A)的表達式,以及從A0如何得到A1,A2……,以此類推可得到Ak.【詳解】(Ⅰ)答案不唯一,如圖所示數表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因為,,所以,,...,,,,...,這18個數中有9個1,9個-1.令.一方面,由于這18個數中有9個1,9個-1,從而①,另一方面,表示數表中所有元素之積(記這81個實數之積為m);也表示m,從而②,①,②相矛盾,從而不存在,使得.(Ⅲ)記這個實數之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有③,注意到,,下面考慮,,...,,,,...,中-1的個數,由③知,上述2n個實數中,-1的個數一定為偶數,該偶數記為,則1的個數為2n-2k,所以,對數表,顯然.將數表中的由1變為-1,得到數表,顯然,將數表中的由1變為-1,得到數表,顯然,依此類推,將數表中的由1變為-1,得到數表,即數表滿足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合為.【點睛】本題為數列的創新應用題,考查數學分析與思考能力及推理求解能力,解題關鍵是讀懂題意,根據引入的概念與性質進行推理求解,屬于較難題.20.(1)列聯表見解析,有;(2)分布列見解析,.【解析】
(1)根據題意,結合已知數據即可填寫列聯表,計算出的觀測值,即可進行判斷;(2)先計算出時間在和選取的人數,再求出的可取值,根據古典概型的概率計算公式求得分布列,結合分布列即可求得數學期望.【詳解】(1)因為樣本數據中有流動人員210人,非流動人員90人,所以辦理社保手
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 聘任專家協議書
- 教師赴企業培訓協議書
- 美簽互換協議書
- 租賃期權協議書
- 紫光展銳協議書
- 生產線外包合同協議書
- 貓咪售后協議書
- 職場體驗協議書
- 校區合伙人合同協議書
- 藥品進貨協議書
- 2024年考研英語真題及答案(完整版)
- 高等數學課件第一章函數與極限
- 寵物藥品研究報告-中國寵物藥品市場深度全景調研及投資前景分析報告2024年
- 屋頂-坡屋頂構造(建筑構造)
- 我在伊朗長大
- 臨床醫學概論課程的婦產科學與婦產科手術
- 30題紀檢監察位崗位常見面試問題含HR問題考察點及參考回答
- 中職英語基礎模塊一Unit 8 People and events Reading
- 咖啡師職業生涯規劃書
- 光伏電站事故處理規程
- 汽車租賃經營許可申請表
評論
0/150
提交評論