




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省泰安市東平縣2025年高三下學期期末測試卷數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.復數滿足,則復數在復平面內所對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知向量,,且與的夾角為,則x=()A.-2 B.2 C.1 D.-13.拋物線的焦點為,準線為,,是拋物線上的兩個動點,且滿足,設線段的中點在上的投影為,則的最大值是()A. B. C. D.4.復數在復平面內對應的點為則()A. B. C. D.5.關于圓周率,數學發展史上出現過許多很有創意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發,某同學通過下面的隨機模擬方法來估計的值:先用計算機產生個數對,其中,都是區間上的均勻隨機數,再統計,能與構成銳角三角形三邊長的數對的個數﹔最后根據統計數來估計的值.若,則的估計值為()A. B. C. D.6.在四面體中,為正三角形,邊長為6,,,,則四面體的體積為()A. B. C.24 D.7.已知的共軛復數是,且(為虛數單位),則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知函數在上單調遞增,則的取值范圍()A. B. C. D.9.若為虛數單位,則復數在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知,函數在區間上恰有個極值點,則正實數的取值范圍為()A. B. C. D.11.已知是空間中兩個不同的平面,是空間中兩條不同的直線,則下列說法正確的是()A.若,且,則B.若,且,則C.若,且,則D.若,且,則12.如圖網格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則該幾何體的所有棱中最長棱的長度為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(x+y)(2x-y)5的展開式中x3y3的系數為________.14.在平面直角坐標系xOy中,已知A0,a,B3,a+415.已知函數,且,,使得,則實數m的取值范圍是______.16.已知半徑為4的球面上有兩點A,B,AB=42,球心為O,若球面上的動點C滿足二面角C-AB-O的大小為60°,則四面體三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個特征向量為α=,A的逆矩陣A-1對應的變換將點(3,1)變為點(1,1).求實數a,k的值.18.(12分)已知函數.(1)證明:當時,;(2)若函數有三個零點,求實數的取值范圍.19.(12分)試求曲線y=sinx在矩陣MN變換下的函數解析式,其中M,N.20.(12分)第7屆世界軍人運動會于2019年10月18日至27日在湖北武漢舉行,賽期10天,共設置射擊、游泳、田徑、籃球等27個大項,329個小項.共有來自100多個國家的近萬名現役軍人同臺競技.前期為迎接軍運會順利召開,武漢市很多單位和部門都開展了豐富多彩的宣傳和教育活動,努力讓大家更多的了解軍運會的相關知識,并倡議大家做文明公民.武漢市體育局為了解廣大民眾對軍運會知識的知曉情況,在全市開展了網上問卷調查,民眾參與度極高,現從大批參與者中隨機抽取200名幸運參與者,他們得分(滿分100分)數據,統計結果如下:組別頻數5304050452010(1)若此次問卷調查得分整體服從正態分布,用樣本來估計總體,設,分別為這200人得分的平均值和標準差(同一組數據用該區間中點值作為代表),求,的值(,的值四舍五入取整數),并計算;(2)在(1)的條件下,為感謝大家參與這次活動,市體育局還對參加問卷調查的幸運市民制定如下獎勵方案:得分低于的可以獲得1次抽獎機會,得分不低于的可獲得2次抽獎機會,在一次抽獎中,抽中價值為15元的紀念品A的概率為,抽中價值為30元的紀念品B的概率為.現有市民張先生參加了此次問卷調查并成為幸運參與者,記Y為他參加活動獲得紀念品的總價值,求Y的分布列和數學期望,并估算此次紀念品所需要的總金額.(參考數據:;;.)21.(12分)已知各項均不相等的等差數列的前項和為,且成等比數列.(1)求數列的通項公式;(2)求數列的前項和.22.(10分)已知都是大于零的實數.(1)證明;(2)若,證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
設,則,可得,即可得到,進而找到對應的點所在象限.【詳解】設,則,,,所以復數在復平面內所對應的點為,在第二象限.故選:B【點睛】本題考查復數在復平面內對應的點所在象限,考查復數的模,考查運算能力.2、B【解析】
由題意,代入解方程即可得解.【詳解】由題意,所以,且,解得.故選:B.【點睛】本題考查了利用向量的數量積求向量的夾角,屬于基礎題.3、B【解析】
試題分析:設在直線上的投影分別是,則,,又是中點,所以,則,在中,所以,即,所以,故選B.考點:拋物線的性質.【名師點晴】在直線與拋物線的位置關系問題中,涉及到拋物線上的點到焦點的距離,焦點弦長,拋物線上的點到準線(或與準線平行的直線)的距離時,常常考慮用拋物線的定義進行問題的轉化.象本題弦的中點到準線的距離首先等于兩點到準線距離之和的一半,然后轉化為兩點到焦點的距離,從而與弦長之間可通過余弦定理建立關系.4、B【解析】
求得復數,結合復數除法運算,求得的值.【詳解】易知,則.故選:B【點睛】本小題主要考查復數及其坐標的對應,考查復數的除法運算,屬于基礎題.5、B【解析】
先利用幾何概型的概率計算公式算出,能與構成銳角三角形三邊長的概率,然后再利用隨機模擬方法得到,能與構成銳角三角形三邊長的概率,二者概率相等即可估計出.【詳解】因為,都是區間上的均勻隨機數,所以有,,若,能與構成銳角三角形三邊長,則,由幾何概型的概率計算公式知,所以.故選:B.【點睛】本題考查幾何概型的概率計算公式及運用隨機數模擬法估計概率,考查學生的基本計算能力,是一個中檔題.6、A【解析】
推導出,分別取的中點,連結,則,推導出,從而,進而四面體的體積為,由此能求出結果.【詳解】解:在四面體中,為等邊三角形,邊長為6,,,,,,分別取的中點,連結,則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【點睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關系等基礎知識,考查運算求解能力.7、D【解析】
設,整理得到方程組,解方程組即可解決問題.【詳解】設,因為,所以,所以,解得:,所以復數在復平面內對應的點為,此點位于第四象限.故選D【點睛】本題主要考查了復數相等、復數表示的點知識,考查了方程思想,屬于基礎題.8、B【解析】
由,可得,結合在上單調遞增,易得,即可求出的范圍.【詳解】由,可得,時,,而,又在上單調遞增,且,所以,則,即,故.故選:B.【點睛】本題考查了三角函數的單調性的應用,考查了學生的邏輯推理能力,屬于基礎題.9、D【解析】
根據復數的運算,化簡得到,再結合復數的表示,即可求解,得到答案.【詳解】由題意,根據復數的運算,可得,所對應的點為位于第四象限.故選D.【點睛】本題主要考查了復數的運算,以及復數的幾何意義,其中解答中熟記復數的運算法則,準確化簡復數為代數形式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.10、B【解析】
先利用向量數量積和三角恒等變換求出,函數在區間上恰有個極值點即為三個最值點,解出,,再建立不等式求出的范圍,進而求得的范圍.【詳解】解:令,解得對稱軸,,又函數在區間恰有個極值點,只需解得.故選:.【點睛】本題考查利用向量的數量積運算和三角恒等變換與三角函數性質的綜合問題.(1)利用三角恒等變換及輔助角公式把三角函數關系式化成或的形式;(2)根據自變量的范圍確定的范圍,根據相應的正弦曲線或余弦曲線求值域或最值或參數范圍.11、D【解析】
利用線面平行和垂直的判定定理和性質定理,對選項做出判斷,舉出反例排除.【詳解】解:對于,當,且,則與的位置關系不定,故錯;對于,當時,不能判定,故錯;對于,若,且,則與的位置關系不定,故錯;對于,由可得,又,則故正確.故選:.【點睛】本題考查空間線面位置關系.判斷線面位置位置關系利用好線面平行和垂直的判定定理和性質定理.一般可借助正方體模型,以正方體為主線直觀感知并準確判斷.12、C【解析】
利用正方體將三視圖還原,觀察可得最長棱為AD,算出長度.【詳解】幾何體的直觀圖如圖所示,易得最長的棱長為故選:C.【點睛】本題考查了三視圖還原幾何體的問題,其中利用正方體作襯托是關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、40【解析】
先求出的展開式的通項,再求出即得解.【詳解】設的展開式的通項為,令r=3,則,令r=2,則,所以展開式中含x3y3的項為.所以x3y3的系數為40.故答案為:40【點睛】本題主要考查二項式定理求指定項的系數,意在考查學生對這些知識的理解掌握水平.14、(-53,【解析】
求出AB的長度,直線方程,結合△ABC的面積為5,轉化為圓心到直線的距離進行求解即可.【詳解】解:AB的斜率k=a+4-a3-0=4=3設△ABC的高為h,則∵△ABC的面積為5,∴S=12|AB|h=即h=2,直線AB的方程為y﹣a=43x,即4x﹣3y+3若圓x2+y2=9上有且僅有四個不同的點C,則圓心O到直線4x﹣3y+3a=0的距離d=|3a|則應該滿足d<R﹣h=3﹣2=1,即|3a|5得|3a|<5得-53<故答案為:(-53,【點睛】本題主要考查直線與圓的位置關系的應用,求出直線方程和AB的長度,轉化為圓心到直線的距離是解決本題的關鍵.15、【解析】
根據條件轉化為函數在上的值域是函數在上的值域的子集;分別求值域即可得到結論.【詳解】解:依題意,,即函數在上的值域是函數在上的值域的子集.因為在上的值域為()或(),在上的值域為,故或,解得故答案為:.【點睛】本題考查了分段函數的值域求參數的取值范圍,屬于中檔題.16、4【解析】
設△ABC所在截面圓的圓心為O1,AB中點為D,連接OD,易知∠ODO1即為二面角C-AB-O的平面角,可求出OD,?O1D及OO1,然后可判斷出四面體OABC外接球的球心E在直線OO1上,在【詳解】設△ABC所在截面圓的圓心為O1,AB中點為D,連接OD,OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,∠ODO1即為二面角∠ODO因為OA=OB=4,?AB=42,所以△OAB在Rt△ODO1中,由cos60o=O1D因為O1到A、B、C三的距離相等,所以,四面體OABC外接球的球心E在直線OO設四面體OABC外接球半徑為R,在Rt△O1由勾股定理可得:O1B2+O【點睛】本題考查了三棱錐的外接球問題,考查了學生的空間想象能力、邏輯推理能力及計算求解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、解:設特征向量為α=對應的特征值為λ,則=λ,即因為k≠0,所以a=2.5分因為,所以A=,即=,所以2+k=3,解得k=2.綜上,a=2,k=2.20分【解析】試題分析:由特征向量求矩陣A,由逆矩陣求k考點:特征向量,逆矩陣點評:本題主要考查了二階矩陣,以及特征值與特征向量的計算,考查逆矩陣.18、(1)見解析;(2)【解析】
(1)要證明,只需證明即可;(2)有3個根,可轉化為有3個根,即與有3個不同交點,利用導數作出的圖象即可.【詳解】(1)令,則,當時,,故在上單調遞增,所以,即,所以.(2)由已知,,依題意,有3個零點,即有3個根,顯然0不是其根,所以有3個根,令,則,當時,,當時,,當時,,故在單調遞減,在,上單調遞增,作出的圖象,易得.故實數的取值范圍為.【點睛】本題考查利用導數證明不等式以及研究函數零點個數問題,考查學生數形結合的思想,是一道中檔題.19、y=2sin2x.【解析】
計算MN,計算得到函數表達式.【詳解】∵M,N,∴MN,∴在矩陣MN變換下,→∴曲線y=sinx在矩陣MN變換下的函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CIS 17003-2019電子式互感器測試儀
- T/CIQA 16-2021方艙式核酸檢測實驗室通用技術規范
- T/CIMA 0079.1-2023基于電力流的碳排放計量第1部分:計量模型
- T/CIES 001-2016車庫LED照明技術規范
- T/CI 363-2024預制裝配式可拆底模高強吊鉤鋼筋桁架樓承板應用技術規程
- T/CESA 1325-2024會議場景智能拍攝系統技術要求
- T/CERDS 4-2022企業ESG報告編制指南
- T/CECS 10265-2023混凝土抗水滲透儀
- T/CECS 10151-2021中壓轉換開關電器及成套開關設備
- T/CCS 009-2023礦用短距離無線寬帶通信技術要求
- 2024建安杯信息通信建設行業安全競賽題庫(試題含答案1-464題)
- 基于動態勢能獎勵機制的雙足機器人穩定行走控制研究
- 查找身邊的安全隱患
- 乳腺癌手術的整體治療
- 2023年陜西省普通高校職業教育單獨招生考試英語試題及答案
- 工程師轉正工作總結
- 8 推翻帝制 民族覺醒 說課稿 -2023-2024學年道德與法治五年級下冊統編版
- 麗聲北極星分級繪本第二級下-
- 變電站數字孿生框架構建與關鍵技術研究
- 2025-2030年中國報廢汽車回收行業市場十三五發展規劃及投資戰略研究報告新版
- DIP支付下的病案首頁填寫
評論
0/150
提交評論