黑龍江省泰來縣第一中學2025年高三下學期期末考試試題_第1頁
黑龍江省泰來縣第一中學2025年高三下學期期末考試試題_第2頁
黑龍江省泰來縣第一中學2025年高三下學期期末考試試題_第3頁
黑龍江省泰來縣第一中學2025年高三下學期期末考試試題_第4頁
黑龍江省泰來縣第一中學2025年高三下學期期末考試試題_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省泰來縣第一中學2025年高三下學期期末考試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標準方程為()A. B. C. D.2.已知三棱錐的四個頂點都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.3.若命題p:從有2件正品和2件次品的產品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內任取一點M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q4.已知函數,若函數在上有3個零點,則實數的取值范圍為()A. B. C. D.5.是虛數單位,復數在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知是虛數單位,若,則()A. B.2 C. D.37.設雙曲線(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線交于B,C兩點,過B,C分別作AC,AB的垂線交于點D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.8.已知數列是公比為的等比數列,且,若數列是遞增數列,則的取值范圍為()A. B. C. D.9.隨著人民生活水平的提高,對城市空氣質量的關注度也逐步增大,下圖是某城市月至月的空氣質量檢測情況,圖中一、二、三、四級是空氣質量等級,一級空氣質量最好,一級和二級都是質量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數超過天的月份有個B.第二季度與第一季度相比,空氣達標天數的比重下降了C.8月是空氣質量最好的一個月D.6月份的空氣質量最差.10.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.11.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數為()A.1 B.2C.3 D.412.函數的部分圖象如圖所示,則()A.6 B.5 C.4 D.3二、填空題:本題共4小題,每小題5分,共20分。13.記為數列的前項和.若,則______.14.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.15.若四棱錐的側面內有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數k,且動點Q的軌跡是拋物線,則當二面角平面角的大小為時,k的值為______.16.已知等差數列的前項和為,且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在世界讀書日期間,某地區調查組對居民閱讀情況進行了調查,獲得了一個容量為200的樣本,其中城鎮居民140人,農村居民60人.在這些居民中,經常閱讀的城鎮居民有100人,農村居民有30人.(1)填寫下面列聯表,并判斷能否有99%的把握認為經常閱讀與居民居住地有關?城鎮居民農村居民合計經常閱讀10030不經常閱讀合計200(2)調查組從該樣本的城鎮居民中按分層抽樣抽取出7人,參加一次閱讀交流活動,若活動主辦方從這7位居民中隨機選取2人作交流發言,求被選中的2位居民都是經常閱讀居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82818.(12分)在,角、、所對的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線,求的面積.19.(12分)一個工廠在某年里連續10個月每月產品的總成本(萬元)與該月產量(萬件)之間有如下一組數據:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通過畫散點圖,發現可用線性回歸模型擬合與的關系,請用相關系數加以說明;(2)①建立月總成本與月產量之間的回歸方程;②通過建立的關于的回歸方程,估計某月產量為1.98萬件時,產品的總成本為多少萬元?(均精確到0.001)附注:①參考數據:,,,,.②參考公式:相關系數,,.20.(12分)[選修4-5:不等式選講]設函數.(1)求不等式的解集;(2)已知關于的不等式在上有解,求實數的取值范圍.21.(12分)(Ⅰ)證明:;(Ⅱ)證明:();(Ⅲ)證明:.22.(10分)如圖,在四邊形中,,,.(1)求的長;(2)若的面積為6,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據焦點所在坐標軸和漸近線方程設出雙曲線的標準方程,結合焦點坐標求解.【詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設雙曲線的方程為,一個焦點為,∴,∴,故的標準方程為.故選:B【點睛】此題考查根據雙曲線的漸近線和焦點求解雙曲線的標準方程,易錯點在于漏掉考慮焦點所在坐標軸導致方程形式出錯.2、C【解析】

設為中點,先證明平面,得出為所求角,利用勾股定理計算,得出結論.【詳解】設分別是的中點平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項:【點睛】本題考查了棱錐與外接球的位置關系問題,關鍵是能夠通過垂直關系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.3、B【解析】因為從有2件正品和2件次品的產品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯誤,則?p是正確的;在邊長為4的正方形ABCD內任取一點M點睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構成的復合命題的真假的判定有機地整合在一起,旨在考查命題真假的判定及古典概型的特征與計算公式的運用、幾何概型的特征與計算公式的運用等知識與方法的綜合運用,以及分析問題解決問題的能力。4、B【解析】

根據分段函數,分當,,將問題轉化為的零點問題,用數形結合的方法研究.【詳解】當時,,令,在是增函數,時,有一個零點,當時,,令當時,,在上單調遞增,當時,,在上單調遞減,所以當時,取得最大值,因為在上有3個零點,所以當時,有2個零點,如圖所示:所以實數的取值范圍為綜上可得實數的取值范圍為,故選:B【點睛】本題主要考查了函數的零點問題,還考查了數形結合的思想和轉化問題的能力,屬于中檔題.5、D【解析】

求出復數在復平面內對應的點的坐標,即可得出結論.【詳解】復數在復平面上對應的點的坐標為,該點位于第四象限.故選:D.【點睛】本題考查復數對應的點的位置的判斷,屬于基礎題.6、A【解析】

直接將兩邊同時乘以求出復數,再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復數的運算及其模的求法,是基礎題.7、A【解析】

由題意,根據雙曲線的對稱性知在軸上,設,則由得:,因為到直線的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.8、D【解析】

先根據已知條件求解出的通項公式,然后根據的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數列是單調遞增數列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數列通項公式求解以及根據數列單調性求解參數范圍,難度一般.已知數列單調性,可根據之間的大小關系分析問題.9、D【解析】由圖表可知月空氣質量合格天氣只有天,月份的空氣質量最差.故本題答案選.10、D【解析】

根據三視圖判斷出幾何體為正四棱錐,由此計算出幾何體的表面積.【詳解】根據三視圖可知,該幾何體為正四棱錐.底面積為.側面的高為,所以側面積為.所以該幾何體的表面積是.故選:D【點睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計算,屬于基礎題.11、D【解析】可以是共4個,選D.12、A【解析】

根據正切函數的圖象求出A、B兩點的坐標,再求出向量的坐標,根據向量數量積的坐標運算求出結果.【詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點睛】本題考查正切函數的圖象,平面向量數量積的運算,屬于綜合題,但是難度不大,解題關鍵是利用圖象與正切函數圖象求出坐標,再根據向量數量積的坐標運算可得結果,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

由已知數列遞推式可得數列是以16為首項,以為公比的等比數列,再由等比數列的前項和公式求解.【詳解】由,得,.且,則,即.數列是以16為首項,以為公比的等比數列,則.故答案為:1.【點睛】本題主要考查數列遞推式,考查等比數列的前項和,意在考查學生對這些知識的理解掌握水平.14、【解析】

由,求出長度關系,利用角平分線以及面積關系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點睛】本題考查共線向量的應用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.15、【解析】

二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數k,可得,由此可得,則由可求k值.【詳解】解:如圖,設二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.∵點Q到底面的距離與到點P的距離之比為正常數k,∴,則,∵動點Q的軌跡是拋物線,∴,即則.∴二面角的平面角的余弦值為解得:().故答案為:.【點睛】本題考查了四棱錐的結構特征,由四棱錐的側面與底面的夾角求參數值,屬于中檔題.16、【解析】

根據等差數列的性質求得,結合等差數列前項和公式求得的值.【詳解】因為為等差數列,所以,解得,所以.故答案為:【點睛】本小題考查等差數列的性質,前項和公式的應用等基礎知識;考查運算求解能力,應用意識.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析,有99%的把握認為經常閱讀與居民居住地有關.(2)【解析】

(1)根據題中數據得到列聯表,然后計算出,與臨界值表中的數據對照后可得結論;(2)由題意得概率為古典概型,根據古典概型概率公式計算可得所求.【詳解】(1)由題意可得:城鎮居民農村居民合計經常閱讀10030130不經常閱讀403070合計14060200則,所以有99%的把握認為經常閱讀與居民居住地有關.(2)在城鎮居民140人中,經常閱讀的有100人,不經常閱讀的有40人.采取分層抽樣抽取7人,則其中經常閱讀的有5人,記為、、、、;不經常閱讀的有2人,記為、.從這7人中隨機選取2人作交流發言,所有可能的情況為,,,,,,,,,,,,,,,,,,,,,共21種,被選中的位居民都是經常閱讀居民的情況有種,所求概率為.【點睛】本題主要考查古典概型的概率計算,以及獨立性檢驗的應用,利用列舉法是解決本題的關鍵,考查學生的計算能力.對于古典概型,要求事件總數是可數的,滿足條件的事件個數可數,使得滿足條件的事件個數除以總的事件個數即可,屬于中檔題.18、(1)(2)答案不唯一,見解析【解析】

(1)由題意根據和差角的三角函數公式可得,再根據同角三角函數基本關系可得的值;(2)在中,由余弦定理可得,解方程分別由三角形面積公式可得答案.【詳解】解:(1)在中,因為,又已知,所以,因為,所以,于是.所以.(2)在中,由余弦定理得,得解得或,當時,的面積,當時,的面積.【點睛】本題考查正余弦定理理解三角形,涉及三角形的面積公式和分類討論思想,屬于中檔題.19、(1)見解析;(2)①②3.386(萬元)【解析】

(1)利用代入數值,求出后即可得解;(2)①計算出、后,利用求出后即可得解;②把代入線性回歸方程,計算即可得解.【詳解】(1)由已知條件得,,∴,說明與正相關,且相關性很強.(2)①由已知求得,,所以,所求回歸直線方程為.②當時,(萬元),此時產品的總成本約為3.386萬元.【點睛】本題考查了相關系數的應用以及線性回歸方程的求解和應用,考查了計算能力,屬于中檔題.20、(1)(2)【解析】

(1)零點分段去絕對值解不等式即可(2)由題在上有解,去絕對值分離變量a即可.【詳解】(1)不等式,即等價于或或解得,所以原不等式的解集為;(2)當時,不等式,即,所以在上有解即在上有解,所以,.【點睛】本題考查絕對值不等式解法,不等式有解求參數,熟記零點分段,熟練處理不等式有解問題是關鍵,是中檔題.21、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】

運用數學歸納法證明即可得到結果化簡,運用累加法得出結果運用放縮法和累加法進行求證【詳解】(Ⅰ)數學歸納法證明時,①當時,成立;②當時,假設成立,則時所以時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論