




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣西河池天峨縣達(dá)標(biāo)名校2024屆中考聯(lián)考數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,直線AB∥CD,∠C=44°,∠E為直角,則∠1等于()A.132° B.134° C.136° D.138°2.一個圓的內(nèi)接正六邊形的邊長為2,則該圓的內(nèi)接正方形的邊長為()A. B.2 C.2 D.43.如圖,在已知的△ABC中,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長為半徑作弧,兩弧相交于點(diǎn)M、N;②作直線MN交AB于點(diǎn)D,連接CD,則下列結(jié)論正確的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB4.已知二次函數(shù)y=-x2-4x-5,左、右平移該拋物線,頂點(diǎn)恰好落在正比例函數(shù)y=-x的圖象上,則平移后的拋物線解析式為()A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-25.如圖,向四個形狀不同高同為h的水瓶中注水,注滿為止.如果注水量V(升)與水深h(厘米)的函數(shù)關(guān)系圖象如圖所示,那么水瓶的形狀是()A. B. C. D.6.已知電流I(安培)、電壓U(伏特)、電阻R(歐姆)之間的關(guān)系為,當(dāng)電壓為定值時,I關(guān)于R的函數(shù)圖象是()A. B. C. D.7.已知拋物線y=ax2+bx+c(a<0)與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),頂點(diǎn)坐標(biāo)為(1,n),則下列結(jié)論:①4a+2b<0;②﹣1≤a≤;③對于任意實(shí)數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n﹣1有兩個不相等的實(shí)數(shù)根.其中結(jié)論正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個8.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A從出發(fā),繞點(diǎn)O順時針旋轉(zhuǎn)一周,則點(diǎn)A不經(jīng)過()A.點(diǎn)M B.點(diǎn)N C.點(diǎn)P D.點(diǎn)Q9.下列所給的汽車標(biāo)志圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.10.已知方程x2﹣x﹣2=0的兩個實(shí)數(shù)根為x1、x2,則代數(shù)式x1+x2+x1x2的值為()A.﹣3 B.1 C.3 D.﹣1二、填空題(共7小題,每小題3分,滿分21分)11.如果a2﹣a﹣1=0,那么代數(shù)式(a﹣)的值是.12.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且﹣1<x1<0,對稱軸x=1.如圖所示,有下列5個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實(shí)數(shù)).其中所有結(jié)論正確的是______(填寫番號).13.在如圖的正方形方格紙中,每個小的四邊形都是相同的正方形,A,B,C,D都在格點(diǎn)處,AB與CD相交于O,則tan∠BOD的值等于__________.14.在Rt△ABC內(nèi)有邊長分別為2,x,3的三個正方形如圖擺放,則中間的正方形的邊長x的值為_____.15.一個布袋里裝有10個只有顏色不同的球,這10個球中有m個紅球,從布袋中摸出一個球,記下顏色后放回,攪勻,再摸出一個球,通過大量重復(fù)試驗(yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在0.3左右,則m的值約為__________.16.因式分解:2x17.如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC是正方形,點(diǎn)C(0,4),D是OA中點(diǎn),將△CDO以C為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)90°后,再將得到的三角形平移,使點(diǎn)C與點(diǎn)O重合,寫出此時點(diǎn)D的對應(yīng)點(diǎn)的坐標(biāo):_____.三、解答題(共7小題,滿分69分)18.(10分)圖1和圖2中,優(yōu)弧紙片所在⊙O的半徑為2,AB=2,點(diǎn)P為優(yōu)弧上一點(diǎn)(點(diǎn)P不與A,B重合),將圖形沿BP折疊,得到點(diǎn)A的對稱點(diǎn)A′.發(fā)現(xiàn):(1)點(diǎn)O到弦AB的距離是,當(dāng)BP經(jīng)過點(diǎn)O時,∠ABA′=;(2)當(dāng)BA′與⊙O相切時,如圖2,求折痕的長.拓展:把上圖中的優(yōu)弧紙片沿直徑MN剪裁,得到半圓形紙片,點(diǎn)P(不與點(diǎn)M,N重合)為半圓上一點(diǎn),將圓形沿NP折疊,分別得到點(diǎn)M,O的對稱點(diǎn)A′,O′,設(shè)∠MNP=α.(1)當(dāng)α=15°時,過點(diǎn)A′作A′C∥MN,如圖3,判斷A′C與半圓O的位置關(guān)系,并說明理由;(2)如圖4,當(dāng)α=°時,NA′與半圓O相切,當(dāng)α=°時,點(diǎn)O′落在上.(3)當(dāng)線段NO′與半圓O只有一個公共點(diǎn)N時,直接寫出β的取值范圍.19.(5分)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△AOB是等腰直角三角形,∠AOB=90°,點(diǎn)A(2,1).(1)求點(diǎn)B的坐標(biāo);(2)求經(jīng)過A、O、B三點(diǎn)的拋物線的函數(shù)表達(dá)式;(3)在(2)所求的拋物線上,是否存在一點(diǎn)P,使四邊形ABOP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.20.(8分)閱讀與應(yīng)用:閱讀1:a、b為實(shí)數(shù),且a>0,b>0,因?yàn)椋裕瑥亩ó?dāng)a=b時取等號).閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結(jié)論可知:,所以當(dāng)即時,函數(shù)的最小值為.閱讀理解上述內(nèi)容,解答下列問題:問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為,周長為,求當(dāng)x=__________時,周長的最小值為__________.問題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當(dāng)x=__________時,的最小值為__________.問題3:某民辦學(xué)習(xí)每天的支出總費(fèi)用包含以下三個部分:一是教職工工資6400元;二是學(xué)生生活費(fèi)每人10元;三是其他費(fèi)用.其中,其他費(fèi)用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.1.當(dāng)學(xué)校學(xué)生人數(shù)為多少時,該校每天生均投入最低?最低費(fèi)用是多少元?(生均投入=支出總費(fèi)用÷學(xué)生人數(shù))21.(10分)已知,拋物線L:y=x2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(-3,0),與y軸交于點(diǎn)C(0,3).(1)求拋物線L的頂點(diǎn)坐標(biāo)和A點(diǎn)坐標(biāo).(2)如何平移拋物線L得到拋物線L1,使得平移后的拋物線L1的頂點(diǎn)與拋物線L的頂點(diǎn)關(guān)于原點(diǎn)對稱?(3)將拋物線L平移,使其經(jīng)過點(diǎn)C得到拋物線L2,點(diǎn)P(m,n)(m>0)是拋物線L2上的一點(diǎn),是否存在點(diǎn)P,使得△PAC為等腰直角三角形,若存在,請直接寫出拋物線L2的表達(dá)式,若不存在,請說明理由.22.(10分)已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個動點(diǎn).(1)求拋物線的解析式;(2)當(dāng)點(diǎn)P運(yùn)動到什么位置時,△PAB的面積有最大值?(3)過點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過點(diǎn)P做PE∥x軸交拋物線于點(diǎn)E,連結(jié)DE,請問是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.23.(12分)定義:和三角形一邊和另兩邊的延長線同時相切的圓叫做三角形這邊上的旁切圓.如圖所示,已知:⊙I是△ABC的BC邊上的旁切圓,E、F分別是切點(diǎn),AD⊥IC于點(diǎn)D.(1)試探究:D、E、F三點(diǎn)是否同在一條直線上?證明你的結(jié)論.(2)設(shè)AB=AC=5,BC=6,如果△DIE和△AEF的面積之比等于m,,試作出分別以,為兩根且二次項(xiàng)系數(shù)為6的一個一元二次方程.24.(14分)圖1所示的遮陽傘,傘柄垂直于水平地面,其示意圖如圖2、當(dāng)傘收緊時,點(diǎn)P與點(diǎn)A重合;當(dāng)傘慢慢撐開時,動點(diǎn)P由A向B移動;當(dāng)點(diǎn)P到達(dá)點(diǎn)B時,傘張得最開、已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、設(shè)AP=x分米.(1)求x的取值范圍;(2)若∠CPN=60°,求x的值;(3)設(shè)陽光直射下,傘下的陰影(假定為圓面)面積為y,求y關(guān)于x的關(guān)系式(結(jié)果保留π).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】過E作EF∥AB,求出AB∥CD∥EF,根據(jù)平行線的性質(zhì)得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:過E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC為直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故選B.“點(diǎn)睛”本題考查了平行線的性質(zhì)的應(yīng)用,能正確作出輔助線是解此題的關(guān)鍵.2、B【解析】
圓內(nèi)接正六邊形的邊長是1,即圓的半徑是1,則圓的內(nèi)接正方形的對角線長是2,進(jìn)而就可求解.【詳解】解:∵圓內(nèi)接正六邊形的邊長是1,∴圓的半徑為1.那么直徑為2.圓的內(nèi)接正方形的對角線長為圓的直徑,等于2.∴圓的內(nèi)接正方形的邊長是1.故選B.【點(diǎn)睛】本題考查正多邊形與圓,關(guān)鍵是利用知識點(diǎn):圓內(nèi)接正六邊形的邊長和圓的半徑相等;圓的內(nèi)接正方形的對角線長為圓的直徑解答.3、B【解析】
作弧后可知MN⊥CB,且CD=DB.【詳解】由題意性質(zhì)可知MN是BC的垂直平分線,則MN⊥CB,且CD=DB,則CD+AD=AB.【點(diǎn)睛】了解中垂線的作圖規(guī)則是解題的關(guān)鍵.4、D【解析】
把這個二次函數(shù)的圖象左、右平移,頂點(diǎn)恰好落在正比例函數(shù)y=﹣x的圖象上,即頂點(diǎn)的橫縱坐標(biāo)互為相反數(shù),而平移時,頂點(diǎn)的縱坐標(biāo)不變,即可求得函數(shù)解析式.【詳解】解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴頂點(diǎn)坐標(biāo)是(﹣1,﹣1).由題知:把這個二次函數(shù)的圖象左、右平移,頂點(diǎn)恰好落在正比例函數(shù)y=﹣x的圖象上,即頂點(diǎn)的橫縱坐標(biāo)互為相反數(shù).∵左、右平移時,頂點(diǎn)的縱坐標(biāo)不變,∴平移后的頂點(diǎn)坐標(biāo)為(1,﹣1),∴函數(shù)解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.故選D.【點(diǎn)睛】本題考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律,上下平移時,點(diǎn)的橫坐標(biāo)不變;左右平移時,點(diǎn)的縱坐標(biāo)不變.同時考查了二次函數(shù)的性質(zhì),正比例函數(shù)y=﹣x的圖象上點(diǎn)的坐標(biāo)特征.5、D【解析】
根據(jù)一次函數(shù)的性質(zhì)結(jié)合題目中的條件解答即可.【詳解】解:由題可得,水深與注水量之間成正比例關(guān)系,∴隨著水的深度變高,需要的注水量也是均勻升高,∴水瓶的形狀是圓柱,故選:D.【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對一次函數(shù)的性質(zhì)的理解,掌握一次函數(shù)的性質(zhì)是解題的關(guān)鍵.6、C【解析】
根據(jù)反比例函數(shù)的圖像性質(zhì)進(jìn)行判斷.【詳解】解:∵,電壓為定值,∴I關(guān)于R的函數(shù)是反比例函數(shù),且圖象在第一象限,故選C.【點(diǎn)睛】本題考查反比例函數(shù)的圖像,掌握圖像性質(zhì)是解題關(guān)鍵.7、C【解析】
①由拋物線的頂點(diǎn)橫坐標(biāo)可得出b=-2a,進(jìn)而可得出4a+2b=0,結(jié)論①錯誤;
②利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征結(jié)合b=-2a可得出a=-,再結(jié)合拋物線與y軸交點(diǎn)的位置即可得出-1≤a≤-,結(jié)論②正確;
③由拋物線的頂點(diǎn)坐標(biāo)及a<0,可得出n=a+b+c,且n≥ax2+bx+c,進(jìn)而可得出對于任意實(shí)數(shù)m,a+b≥am2+bm總成立,結(jié)論③正確;
④由拋物線的頂點(diǎn)坐標(biāo)可得出拋物線y=ax2+bx+c與直線y=n只有一個交點(diǎn),將直線下移可得出拋物線y=ax2+bx+c與直線y=n-1有兩個交點(diǎn),進(jìn)而可得出關(guān)于x的方程ax2+bx+c=n-1有兩個不相等的實(shí)數(shù)根,結(jié)合④正確.【詳解】:①∵拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(1,n),
∴-=1,
∴b=-2a,
∴4a+2b=0,結(jié)論①錯誤;
②∵拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-1,0),
∴a-b+c=3a+c=0,
∴a=-.
又∵拋物線y=ax2+bx+c與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),
∴2≤c≤3,
∴-1≤a≤-,結(jié)論②正確;
③∵a<0,頂點(diǎn)坐標(biāo)為(1,n),
∴n=a+b+c,且n≥ax2+bx+c,
∴對于任意實(shí)數(shù)m,a+b≥am2+bm總成立,結(jié)論③正確;
④∵拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(1,n),
∴拋物線y=ax2+bx+c與直線y=n只有一個交點(diǎn),
又∵a<0,
∴拋物線開口向下,
∴拋物線y=ax2+bx+c與直線y=n-1有兩個交點(diǎn),
∴關(guān)于x的方程ax2+bx+c=n-1有兩個不相等的實(shí)數(shù)根,結(jié)合④正確.
故選C.【點(diǎn)睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系、拋物線與x軸的交點(diǎn)以及二次函數(shù)的性質(zhì),觀察函數(shù)圖象,逐一分析四個結(jié)論的正誤是解題的關(guān)鍵.8、C【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,逐一判斷即可.【詳解】解:連接OA、OM、ON、OP,根據(jù)旋轉(zhuǎn)的性質(zhì),點(diǎn)A的對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離與OA的長度應(yīng)相等根據(jù)網(wǎng)格線和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5∵OA=OM=ON=OQ≠OP∴則點(diǎn)A不經(jīng)過點(diǎn)P故選C.【點(diǎn)睛】此題考查的是旋轉(zhuǎn)的性質(zhì)和勾股定理,掌握旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等和用勾股定理求線段的長是解決此題的關(guān)鍵.9、B【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解即可.詳解:A.是軸對稱圖形,不是中心對稱圖形;B.是軸對稱圖形,也是中心對稱圖形;C.是軸對稱圖形,不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.點(diǎn)睛:本題考查了中心對稱圖形和軸對稱圖形的知識,關(guān)鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖重合.10、D【解析】分析:根據(jù)一元二次方程根與系數(shù)的關(guān)系求出x1+x2和x1x2的值,然后代入x1+x2+x1x2計(jì)算即可.詳解:由題意得,a=1,b=-1,c=-2,∴,,∴x1+x2+x1x2=1+(-2)=-1.故選D.點(diǎn)睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數(shù)的關(guān)系,若x1,x2為方程的兩個根,則x1,x2與系數(shù)的關(guān)系式:,.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】分析:先由a2﹣a﹣1=0可得a2﹣a=1,再把(a﹣)的第一個括號內(nèi)通分,并把分子分解因式后約分化簡,然后把a(bǔ)2﹣a=1代入即可.詳解:∵a2﹣a﹣1=0,即a2﹣a=1,∴原式===a(a﹣1)=a2﹣a=1,故答案為1點(diǎn)睛:本題考查了分式的化簡求值,解題的關(guān)鍵是正確掌握分式混合運(yùn)算的順序:先算乘除,后算加減,有括號的先算括號里,整體代入法是求代數(shù)式的值常用的一種方法.12、③④⑤【解析】
根據(jù)函數(shù)圖象和二次函數(shù)的性質(zhì)可以判斷題目中各個小題的結(jié)論是否成立,從而可以解答本題.【詳解】解:由圖象可得,拋物線開口向下,則a<0,拋物線與y軸交于正半軸,則c>0,對稱軸在y軸右側(cè),則與a的符號相反,故b>0.
∴a<0,b>0,c>0,
∴abc<0,故①錯誤,
當(dāng)x=-1時,y=a-b+c<0,得b>a+c,故②錯誤,
∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且-1<x1<0,對稱軸x=1,
∴x=2時的函數(shù)值與x=0的函數(shù)值相等,
∴x=2時,y=4a+2b+c>0,故③正確,
∵x=-1時,y=a-b+c<0,-=1,
∴2a-2b+2c<0,b=-2a,
∴-b-2b+2c<0,
∴2c<3b,故④正確,
由圖象可知,x=1時,y取得最大值,此時y=a+b+c,
∴a+b+c>am2+bm+c(m≠1),
∴a+b>am2+bm
∴a+b>m(am+b),故⑤正確,
故答案為:③④⑤.【點(diǎn)睛】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系、拋物線與x軸的交點(diǎn)坐標(biāo),解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.13、3【解析】試題解析:平移CD到C′D′交AB于O′,如圖所示,則∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,設(shè)每個小正方形的邊長為a,則O′B=,O′D′=,BD′=3a,作BE⊥O′D′于點(diǎn)E,則BE=,∴O′E=,∴tanBO′E=,∴tan∠BOD=3.考點(diǎn):解直角三角形.14、1【解析】解:如圖.∵在Rt△ABC中(∠C=90°),放置邊長分別2,3,x的三個正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF.∵EF=x,MO=2,PN=3,∴OE=x﹣2,PF=x﹣3,∴(x﹣2):3=2:(x﹣3),∴x=0(不符合題意,舍去),x=1.故答案為1.點(diǎn)睛:本題主要考查相似三角形的判定和性質(zhì)、正方形的性質(zhì),解題的關(guān)鍵在于找到相似三角形,用x的表達(dá)式表示出對應(yīng)邊是解題的關(guān)鍵.15、3【解析】
在同樣條件下,大量重復(fù)實(shí)驗(yàn)時,隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,列出等式解答.【詳解】解:根據(jù)題意得,=0.3,解得m=3.故答案為:3.【點(diǎn)睛】本題考查隨機(jī)事件概率的意義,關(guān)鍵是要知道在同樣條件下,大量重復(fù)實(shí)驗(yàn)時,隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近.16、2(x+3)(x﹣3).【解析】試題分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18考點(diǎn):因式分解.17、(4,2).【解析】
利用圖象旋轉(zhuǎn)和平移可以得到結(jié)果.【詳解】解:∵△CDO繞點(diǎn)C逆時針旋轉(zhuǎn)90°,得到△CBD′,則BD′=OD=2,∴點(diǎn)D坐標(biāo)為(4,6);當(dāng)將點(diǎn)C與點(diǎn)O重合時,點(diǎn)C向下平移4個單位,得到△OAD′′,∴點(diǎn)D向下平移4個單位.故點(diǎn)D′′坐標(biāo)為(4,2),故答案為(4,2).【點(diǎn)睛】平移和旋轉(zhuǎn):平移是指在同一平面內(nèi),將一個圖形整體按照某個直線方向移動一定的距離,這樣的圖形運(yùn)動叫做圖形的平移運(yùn)動,簡稱平移.定義在平面內(nèi),將一個圖形繞一點(diǎn)按某個方向轉(zhuǎn)動一個角度,這樣的運(yùn)動叫做圖形的旋轉(zhuǎn).這個定點(diǎn)叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角度叫做旋轉(zhuǎn)角.三、解答題(共7小題,滿分69分)18、發(fā)現(xiàn):(1)1,60°;(2)2;拓展:(1)相切,理由詳見解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解析】
發(fā)現(xiàn):(1)利用垂徑定理和勾股定理即可求出點(diǎn)O到AB的距離;利用銳角三角函數(shù)的定義及軸對稱性就可求出∠ABA′.(2)根據(jù)切線的性質(zhì)得到∠OBA′=90°,從而得到∠ABA′=120°,就可求出∠ABP,進(jìn)而求出∠OBP=30°.過點(diǎn)O作OG⊥BP,垂足為G,容易求出OG、BG的長,根據(jù)垂徑定理就可求出折痕的長.拓展:(1)過A'、O作A'H⊥MN于點(diǎn)H,OD⊥A'C于點(diǎn)D.用含30°角的直角三角形的性質(zhì)可得OD=A'H=A'N=MN=2可判定A′C與半圓相切;(2)當(dāng)NA′與半圓相切時,可知ON⊥A′N,則可知α=45°,當(dāng)O′在時,連接MO′,則可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;(3)根據(jù)點(diǎn)A′的位置不同得到線段NO′與半圓O只有一個公共點(diǎn)N時α的取值范圍是0°<α<30°或45°≤α<90°.【詳解】發(fā)現(xiàn):(1)過點(diǎn)O作OH⊥AB,垂足為H,如圖1所示,∵⊙O的半徑為2,AB=2,∴OH==在△BOH中,OH=1,BO=2∴∠ABO=30°∵圖形沿BP折疊,得到點(diǎn)A的對稱點(diǎn)A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)過點(diǎn)O作OG⊥BP,垂足為G,如圖2所示.∵BA′與⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的長為2拓展:(1)相切.分別過A'、O作A'H⊥MN于點(diǎn)H,OD⊥A'C于點(diǎn)D.如圖3所示,∵A'C∥MN∴四邊形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=A'N=MN=2∴A'C與半圓(2)當(dāng)NA′與半圓O相切時,則ON⊥NA′,∴∠ONA′=2α=90°,∴α=45當(dāng)O′在上時,連接MO′,則可知NO′=MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案為:45°;30°.(3)∵點(diǎn)P,M不重合,∴α>0,由(2)可知當(dāng)α增大到30°時,點(diǎn)O′在半圓上,∴當(dāng)0°<α<30°時點(diǎn)O′在半圓內(nèi),線段NO′與半圓只有一個公共點(diǎn)B;當(dāng)α增大到45°時NA′與半圓相切,即線段NO′與半圓只有一個公共點(diǎn)B.當(dāng)α繼續(xù)增大時,點(diǎn)P逐漸靠近點(diǎn)N,但是點(diǎn)P,N不重合,∴α<90°,∴當(dāng)45°≤α<90°線段BO′與半圓只有一個公共點(diǎn)B.綜上所述0°<α<30°或45°≤α<90°.【點(diǎn)睛】本題考查了切線的性質(zhì)、垂徑定理、勾股定理、三角函數(shù)的定義、30°角所對的直角邊等于斜邊的一半、翻折問題等知識,正確的作出輔助線是解題的關(guān)鍵.19、(1)B(-1.2);(2)y=;(3)見解析.【解析】
(1)過A作AC⊥x軸于點(diǎn)C,過B作BD⊥x軸于點(diǎn)D,則可證明△ACO≌△ODB,則可求得OD和BD的長,可求得B點(diǎn)坐標(biāo);(2)根據(jù)A、B、O三點(diǎn)的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;(3)由四邊形ABOP可知點(diǎn)P在線段AO的下方,過P作PE∥y軸交線段OA于點(diǎn)E,可求得直線OA解析式,設(shè)出P點(diǎn)坐標(biāo),則可表示出E點(diǎn)坐標(biāo),可表示出PE的長,進(jìn)一步表示出△POA的面積,則可得到四邊形ABOP的面積,再利用二次函數(shù)的性質(zhì)可求得其面積最大時P點(diǎn)的坐標(biāo).【詳解】(1)如圖1,過A作AC⊥x軸于點(diǎn)C,過B作BD⊥x軸于點(diǎn)D,∵△AOB為等腰三角形,∴AO=BO,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD,在△ACO和△ODB中∴△ACO≌△ODB(AAS),∵A(2,1),∴OD=AC=1,BD=OC=2,∴B(-1,2);(2)∵拋物線過O點(diǎn),∴可設(shè)拋物線解析式為y=ax2+bx,把A、B兩點(diǎn)坐標(biāo)代入可得,解得,∴經(jīng)過A、B、O原點(diǎn)的拋物線解析式為y=x2-x;(3)∵四邊形ABOP,∴可知點(diǎn)P在線段OA的下方,過P作PE∥y軸交AO于點(diǎn)E,如圖2,設(shè)直線AO解析式為y=kx,∵A(2,1),∴k=,∴直線AO解析式為y=x,設(shè)P點(diǎn)坐標(biāo)為(t,t2-t),則E(t,t),∴PE=t-(t2-t)=-t2+t=-(t-1)2+,∴S△AOP=PE×2=PE═-(t-1)2+,由A(2,1)可求得OA=OB=,∴S△AOB=AO?BO=,∴S四邊形ABOP=S△AOB+S△AOP=-(t-1)2++=,∵-<0,∴當(dāng)t=1時,四邊形ABOP的面積最大,此時P點(diǎn)坐標(biāo)為(1,-),綜上可知存在使四邊形ABOP的面積最大的點(diǎn)P,其坐標(biāo)為(1,-).【點(diǎn)睛】本題為二次函數(shù)的綜合應(yīng)用,主要涉及待定系數(shù)法、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)、三角形的面積以及方程思想等知識.在(1)中構(gòu)造三角形全等是解題的關(guān)鍵,在(2)中注意待定系數(shù)法的應(yīng)用,在(3)中用t表示出四邊形ABOP的面積是解題的關(guān)鍵.本題考查知識點(diǎn)較多,綜合性較強(qiáng),難度適中.20、問題1:28問題2:38問題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,生均投入為y元,依題意得:,因?yàn)閤>0,所以,當(dāng)即x=800時,y取最小值2.答:當(dāng)學(xué)校學(xué)生人數(shù)為800人時,該校每天生均投入最低,最低費(fèi)用是2元.【解析】試題分析:問題1:當(dāng)時,周長有最小值,求x的值和周長最小值;問題2:變形,由當(dāng)x+1=時,的最小值,求出x值和的最小值;問題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,生均投入為y元,根據(jù)生均投入=支出總費(fèi)用÷學(xué)生人數(shù),列出關(guān)系式,根據(jù)前兩題解法,從而求解.試題解析:問題1:∵當(dāng)(x>0)時,周長有最小值,∴x=2,∴當(dāng)x=2時,有最小值為=3.即當(dāng)x=2時,周長的最小值為2×3=8;問題2:∵y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),∴,∵當(dāng)x+1=(x>-1)時,的最小值,∴x=3,∴x=3時,有最小值為3+3=8,即當(dāng)x=3時,的最小值為8;問題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,則生均投入y元,依題意得,因?yàn)閤>0,所以,當(dāng)即x=800時,y取最小值2.答:當(dāng)學(xué)校學(xué)生人數(shù)為800時,該校每天生均投入最低,最低費(fèi)用是2元.21、(1)頂點(diǎn)(-2,-1)A(-1,0);(2)y=(x-2)2+1;(3)y=x2-x+3,,y=x2-4x+3,.【解析】
(1)將點(diǎn)B和點(diǎn)C代入求出拋物線L即可求解.(2)將拋物線L化頂點(diǎn)式求出頂點(diǎn)再根據(jù)關(guān)于原點(diǎn)對稱求出即可求解.(3)將使得△PAC為等腰直角三角形,作出所有點(diǎn)P的可能性,求出代入即可求解.【詳解】(1)將點(diǎn)B(-3,0),C(0,3)代入拋物線得:,解得,則拋物線.拋物線與x軸交于點(diǎn)A,,,A(-1,0),拋物線L化頂點(diǎn)式可得,由此可得頂點(diǎn)坐標(biāo)頂點(diǎn)(-2,-1).(2)拋物線L化頂點(diǎn)式可得,由此可得頂點(diǎn)坐標(biāo)頂點(diǎn)(-2,-1)拋物線L1的頂點(diǎn)與拋物線L的頂點(diǎn)關(guān)于原點(diǎn)對稱,對稱頂點(diǎn)坐標(biāo)為(2,1),即將拋物線向右移4個單位,向上移2個單位.(3)使得△PAC為等腰直角三角形,作出所有點(diǎn)P的可能性.是等腰直角三角形,,,,,求得.,同理得,,,由題意知拋物線并將點(diǎn)代入得:.【點(diǎn)睛】本題主要考查拋物線綜合題,討論出P點(diǎn)的所有可能性是解題關(guān)鍵.22、(1)拋物線解析式為y=﹣x2+2x+6;(2)當(dāng)t=3時,△PAB的面積有最大值;(3)點(diǎn)P(4,6).【解析】
(1)利用待定系數(shù)法進(jìn)行求解即可得;(2)作PM⊥OB與點(diǎn)M,交AB于點(diǎn)N,作AG⊥PM,先求出直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6),則N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?OB列出關(guān)于t的函數(shù)表達(dá)式,利用二次函數(shù)的性質(zhì)求解可得;(3)由PH⊥OB知DH∥AO,據(jù)此由OA=OB=6得∠BDH=∠BAO=45°,結(jié)合∠DPE=90°知若△PDE為等腰直角三角形,則∠EDP=45°,從而得出點(diǎn)E與點(diǎn)A重合,求出y=6時x的值即可得出答案.【詳解】(1)∵拋物線過點(diǎn)B(6,0)、C(﹣2,0),∴設(shè)拋物線解析式為y=a(x﹣6)(x+2),將點(diǎn)A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以拋物線解析式為y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如圖1,過點(diǎn)P作PM⊥OB與點(diǎn)M,交AB于點(diǎn)N,作AG⊥PM于點(diǎn)G,設(shè)直線AB解析式為y=kx+b,將點(diǎn)A(0,6)、B(6,0)代入,得:,解得:,則直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6)其中0<t<6,則N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?(AG+BM)=PN?OB=×(﹣t2+3t)×6=﹣t2+9t=﹣(t﹣3)2+,∴當(dāng)t=3時,△PAB的面積有最大值;(3)△PDE為等腰直角三角形,
則PE=PD,
點(diǎn)P(m,-m
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 嵌入式網(wǎng)絡(luò)協(xié)議棧解析試題及答案
- 小學(xué)地震應(yīng)急管理制度
- 加強(qiáng)工廠庫存管理制度
- 軟件測試行業(yè)發(fā)展趨勢的試題及答案
- 嵌入式行業(yè)的創(chuàng)新動向試題及答案
- 公司偏遠(yuǎn)崗位管理制度
- 小學(xué)激情教育管理制度
- 冬季用車安全管理制度
- 化肥庫房存貨管理制度
- 工時單價備案管理制度
- xx旅游股份有限公司財(cái)務(wù)管理制度
- DB32-T 4338-2022 高速公路橋梁支座安裝施工技術(shù)規(guī)范
- 直螺紋套筒進(jìn)場檢查記錄
- Q∕GDW 12177-2021 供電服務(wù)記錄儀技術(shù)規(guī)范
- 講個故事給你聽-小學(xué)故事主題班會課件
- 形式發(fā)票--INVOICE(跨境-)
- 某路延伸段新建市政工程施工設(shè)計(jì)方案
- 110kV變電站操作規(guī)程
- 溫州市住房公積金補(bǔ)貼提取申請表
- 梁氏族譜祖系
- 第8章 異種材料焊接
評論
0/150
提交評論