




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣西岑溪市重點達標名校2024屆中考一模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.在方格紙中,選擇標有序號①②③④中的一個小正方形涂黑,與圖中陰影部分構成中心對稱圖形.該小正方形的序號是()A.① B.② C.③ D.④2.某商品的進價為每件元.當售價為每件元時,每星期可賣出件,現需降價處理,為占有市場份額,且經市場調查:每降價元,每星期可多賣出件.現在要使利潤為元,每件商品應降價()元.A.3 B.2.5 C.2 D.53.方程的解是()A. B. C. D.4.下列運算錯誤的是()A.(m2)3=m6B.a10÷a9=aC.x3?x5=x8D.a4+a3=a75.下列實數中,在2和3之間的是()A. B. C. D.6.如圖,實數﹣3、x、3、y在數軸上的對應點分別為M、N、P、Q,這四個數中絕對值最小的數對應的點是()A.點M B.點N C.點P D.點Q7.長度單位1納米=10A.25.1×10-6米B.C.2.51×105米D.8.一個幾何體的三視圖如圖所示,這個幾何體是()A.棱柱B.正方形C.圓柱D.圓錐9.已知:a、b是不等于0的實數,2a=3b,那么下列等式中正確的是()A.ab=23 B.a10.計算3×(﹣5)的結果等于()A.﹣15B.﹣8C.8D.15二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖所示,平行四邊形ABCD中,E、F是對角線BD上兩點,連接AE、AF、CE、CF,添加__________條件,可以判定四邊形AECF是平行四邊形.(填一個符合要求的條件即可)12.一個圓錐的母線長為5cm,底面半徑為1cm,那么這個圓錐的側面積為_____cm1.13.若反比例函數y=的圖象位于第一、三象限,則正整數k的值是_____.14.我國倡導的“一帶一路”建設將促進我國與世界各國的互利合作,“一帶一路”地區覆蓋總人口約為4400000000人,將數據4400000000用科學記數法表示為______.15.化簡的結果為_____.16.如圖,在梯形中,,,點、分別是邊、的中點.設,,那么向量用向量表示是________.三、解答題(共8題,共72分)17.(8分)閱讀材料:小胖同學發現這樣一個規律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉全等的三角形.小胖把具有這個規律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發現若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.(1)在圖1中證明小胖的發現;借助小胖同學總結規律,構造“手拉手”圖形來解答下面的問題:(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(用含有m的式子表示).18.(8分)如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點D在線段BC上,AF平分DE交BC于點F,連接BE,EF.CD與BE相等?若相等,請證明;若不相等,請說明理由;若∠BAC=90°,求證:BF1+CD1=FD1.19.(8分)服裝店準備購進甲乙兩種服裝,甲種每件進價80元,售價120元;乙種每件進價60元,售價90元,計劃購進兩種服裝共100件,其中甲種服裝不少于65件.(1)若購進這100件服裝的費用不得超過7500,則甲種服裝最多購進多少件?(2)在(1)條件下,該服裝店在5月1日當天對甲種服裝以每件優惠a(0<a<20)元的價格進行優惠促銷活動,乙種服裝價格不變,那么該服裝店應如何調整進貨方案才能獲得最大利潤?20.(8分)如圖,已知二次函數y=﹣x2+bx+c(b,c為常數)的圖象經過點A(3,1),點C(0,4),頂點為點M,過點A作AB∥x軸,交y軸于點D,交該二次函數圖象于點B,連結BC.(1)求該二次函數的解析式及點M的坐標;(2)若將該二次函數圖象向下平移m(m>0)個單位,使平移后得到的二次函數圖象的頂點落在△ABC的內部(不包括△ABC的邊界),求m的取值范圍;(3)點P是直線AC上的動點,若點P,點C,點M所構成的三角形與△BCD相似,請直接寫出所有點P的坐標(直接寫出結果,不必寫解答過程).21.(8分)如圖,是等腰三角形,,.(1)尺規作圖:作的角平分線,交于點(保留作圖痕跡,不寫作法);(2)判斷是否為等腰三角形,并說明理由.22.(10分)為了解某校學生的身高情況,隨機抽取該校男生、女生進行抽樣調查.已知抽取的樣本中男生、女生的人數相同,利用所得數據繪制如下統計圖表:組別身高Ax<160B160≤x<165C165≤x<170D170≤x<175Ex≥175根據圖表提供的信息,回答下列問題:(1)樣本中,男生的身高眾數在組,中位數在組;(2)樣本中,女生身高在E組的有人,E組所在扇形的圓心角度數為;(3)已知該校共有男生600人,女生480人,請估讓身高在165≤x<175之間的學生約有多少人?23.(12分)已知:如圖,在平面直角坐標系xOy中,拋物線的圖像與x軸交于點A(3,0),與y軸交于點B,頂點C在直線上,將拋物線沿射線AC的方向平移,當頂點C恰好落在y軸上的點D處時,點B落在點E處.(1)求這個拋物線的解析式;(2)求平移過程中線段BC所掃過的面積;(3)已知點F在x軸上,點G在坐標平面內,且以點C、E、F、G為頂點的四邊形是矩形,求點F的坐標.24.“春節”是我國的傳統佳節,民間歷來有吃“湯圓”的習俗.某食品廠為了解市民對去年銷量較好的肉餡(A)、豆沙餡(B)、菜餡(C)、三丁餡(D)四種不同口味湯圓的喜愛情況,在節前對某居民區市民進行了抽樣調查,并將調查情況繪制成如下兩幅統計圖(尚不完整).請根據以上信息回答:(1)本次參加抽樣調查的居民人數是人;(2)將圖①②補充完整;(直接補填在圖中)(3)求圖②中表示“A”的圓心角的度數;(4)若居民區有8000人,請估計愛吃D湯圓的人數.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】根據中心對稱圖形的概念,中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合。因此,通過觀察發現,當涂黑②時,所形成的圖形關于點A中心對稱。故選B。2、A【解析】
設售價為x元時,每星期盈利為6125元,那么每件利潤為(x-40),原來售價為每件60元時,每星期可賣出300件,所以現在可以賣出[300+20(60-x)]件,然后根據盈利為6120元即可列出方程解決問題.【詳解】解:設售價為x元時,每星期盈利為6120元,
由題意得(x-40)[300+20(60-x)]=6120,
解得:x1=57,x2=1,
由已知,要多占市場份額,故銷售量要盡量大,即售價要低,故舍去x2=1.
∴每件商品應降價60-57=3元.
故選:A.【點睛】本題考查了一元二次方程的應用.此題找到關鍵描述語,找到等量關系準確的列出方程是解決問題的關鍵.此題要注意判斷所求的解是否符合題意,舍去不合題意的解.3、D【解析】
按照解分式方程的步驟進行計算,注意結果要檢驗.【詳解】解:經檢驗x=4是原方程的解故選:D【點睛】本題考查解分式方程,注意結果要檢驗.4、D【解析】【分析】利用合并同類項法則,單項式乘以單項式法則,同底數冪的乘法、除法的運算法則逐項進行計算即可得.【詳解】A、(m2)3=m6,正確;B、a10÷a9=a,正確;C、x3?x5=x8,正確;D、a4+a3=a4+a3,錯誤,故選D.【點睛】本題考查了合并同類項、單項式乘以單項式、同底數冪的乘除法,熟練掌握各運算的運算法則是解題的關鍵.5、C【解析】
分析:先求出每個數的范圍,逐一分析得出選項.詳解:A、3<π<4,故本選項不符合題意;
B、1<π?2<2,故本選項不符合題意;
C、2<<3,故本選項符合題意;
D、3<<4,故本選項不符合題意;故選C.點睛:本題考查了估算無理數的大小,能估算出每個數的范圍是解本題的關鍵.6、D【解析】∵實數-3,x,3,y在數軸上的對應點分別為M、N、P、Q,
∴原點在點M與N之間,
∴這四個數中絕對值最大的數對應的點是點Q.
故選D.7、D【解析】先將25100用科學記數法表示為2.51×104,再和10-9相乘,等于2.51×10-5米.故選D8、C【解析】試題解析:根據主視圖和左視圖為矩形可判斷出該幾何體是柱體,根據俯視圖是圓可判斷出該幾何體為圓柱.故選C.9、B【解析】∵2a=3b,∴ab=3故選B.10、A【解析】
按照有理數的運算規則計算即可.【詳解】原式=-3×5=-15,故選擇A.【點睛】本題考查了有理數的運算,注意符號不要搞錯.二、填空題(本大題共6個小題,每小題3分,共18分)11、BE=DF【解析】可以添加的條件有BE=DF等;證明:∵四邊形ABCD是平行四邊形,∴AB=CD,∠ABD=∠CDB;又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.
∴∠AEF=∠CFE.∴AE∥CF;∴四邊形AECF是平行四邊形.(一組對邊平行且相等的四邊形是平行四邊形)故答案為BE=DF.12、【解析】分析:根據圓錐的側面展開圖為扇形,先計算出圓錐的底面圓的周長,然后利用扇形的面積公式求解.詳解:∵圓錐的底面半徑為5cm,∴圓錐的底面圓的周長=1π?5=10π,∴圓錐的側面積=?10π?1=10π(cm1).故答案為10π.點睛:本題考查了圓錐的側面積的計算:圓錐的側面展開圖為扇形,扇形的弧長為圓錐的底面周長,扇形的半徑為圓錐的母線長.也考查了扇形的面積公式:S=?l?R,(l為弧長).13、1.【解析】
由反比例函數的性質列出不等式,解出k的范圍,在這個范圍寫出k的整數解則可.【詳解】解:∵反比例函數的圖象在一、三象限,∴2﹣k>0,即k<2.又∵k是正整數,∴k的值是:1.故答案為:1.【點睛】本題考查了反比例函數的性質:當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限.14、4.4×1【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】4400000000的小數點向左移動9位得到4.4,所以4400000000用科學記數法可表示為:4.4×1,故答案為4.4×1.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.15、+1【解析】
利用積的乘方得到原式=[(﹣1)(+1)]2017?(+1),然后利用平方差公式計算.【詳解】原式=[(﹣1)(+1)]2017?(+1)=(2﹣1)2017?(+1)=+1.故答案為:+1.【點睛】本題考查了二次根式的混合運算,在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當的解題途徑,往往能事半功倍.16、【解析】分析:根據梯形的中位線等于上底與下底和的一半表示出EF,然后根據向量的三角形法則解答即可.詳解:∵點E、F分別是邊AB、CD的中點,∴EF是梯形ABCD的中位線,FC=DC,∴EF=(AD+BC).∵BC=3AD,∴EF=(AD+3AD)=2AD,由三角形法則得,=+=2+===2+.故答案為:2+.點睛:本題考查了平面向量,平面向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關鍵,本題還考查了梯形的中位線等于上底與下底和的一半.三、解答題(共8題,共72分)17、(1)證明見解析;(2)證明見解析;(3)∠EAF=m°.【解析】分析:(1)如圖1中,欲證明BD=EC,只要證明△DAB≌△EAC即可;(2)如圖2中,延長DC到E,使得DB=DE.首先證明△BDE是等邊三角形,再證明△ABD≌△CBE即可解決問題;(3)如圖3中,將AE繞點E逆時針旋轉m°得到AG,連接CG、EG、EF、FG,延長ED到M,使得DM=DE,連接FM、CM.想辦法證明△AFE≌△AFG,可得∠EAF=∠FAG=m°.詳(1)證明:如圖1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC,∴BD=EC.(2)證明:如圖2中,延長DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等邊三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)如圖3中,將AE繞點E逆時針旋轉m°得到AG,連接CG、EG、EF、FG,延長ED到M,使得DM=DE,連接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=m°.點睛:本題考查幾何變換綜合題、旋轉變換、等腰三角形的性質、全等三角形的判定和性質等知識,解題的關鍵是學會利用“手拉手”圖形中的全等三角形解決問題,學會構造“手拉手”模型,解決實際問題,屬于中考壓軸題.18、(1)CD=BE,理由見解析;(1)證明見解析.【解析】
(1)由兩個三角形為等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根據“SAS”可證得△EAB≌△CAD,即可得出結論;(1)根據(1)中結論和等腰直角三角形的性質得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后證得EF=FD,BE=CD,等量代換即可得出結論.【詳解】解:(1)CD=BE,理由如下:∵△ABC和△ADE為等腰三角形,∴AB=AC,AD=AE,∵∠EAD=∠BAC,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠CAD,在△EAB與△CAD中,∴△EAB≌△CAD,∴BE=CD;(1)∵∠BAC=90°,∴△ABC和△ADE都是等腰直角三角形,∴∠ABF=∠C=45°,∵△EAB≌△CAD,∴∠EBA=∠C,∴∠EBA=45°,∴∠EBF=90°,在Rt△BFE中,BF1+BE1=EF1,∵AF平分DE,AE=AD,∴AF垂直平分DE,∴EF=FD,由(1)可知,BE=CD,∴BF1+CD1=FD1.【點睛】本題考查了全等三角形的判定和性質,等腰直角三角形的性質,勾股定理等知識,結合題意尋找出三角形全等的條件是解決此題的關鍵.19、(1)甲種服裝最多購進75件,(2)見解析.【解析】
(1)設甲種服裝購進x件,則乙種服裝購進(100-x)件,然后根據購進這100件服裝的費用不得超過7500元,列出不等式解答即可;(2)首先求出總利潤W的表達式,然后針對a的不同取值范圍進行討論,分別確定其進貨方案.【詳解】(1)設購進甲種服裝x件,由題意可知:80x+60(100-x)≤7500,解得x≤75答:甲種服裝最多購進75件,(2)設總利潤為W元,W=(120-80-a)x+(90-60)(100-x)即w=(10-a)x+1.①當0<a<10時,10-a>0,W隨x增大而增大,∴當x=75時,W有最大值,即此時購進甲種服裝75件,乙種服裝25件;②當a=10時,所以按哪種方案進貨都可以;③當10<a<20時,10-a<0,W隨x增大而減小.當x=65時,W有最大值,即此時購進甲種服裝65件,乙種服裝35件.【點睛】本題考查了一元一次方程的應用,不等式的應用,以及一次函數的性質,正確利用x表示出利潤是關鍵.20、(1)y=﹣x2+2x+4;M(1,5);(2)2<m<4;(3)P1(),P2(),P3(3,1),P4(﹣3,7).【解析】試題分析:(1)將點A、點C的坐標代入函數解析式,即可求出b、c的值,通過配方法得到點M的坐標;(2)點M是沿著對稱軸直線x=1向下平移的,可先求出直線AC的解析式,將x=1代入求出點M在向下平移時與AC、AB相交時y的值,即可得到m的取值范圍;(3)由題意分析可得∠MCP=90°,則若△PCM與△BCD相似,則要進行分類討論,分成△PCM∽△BDC或△PCM∽△CDB兩種,然后利用邊的對應比值求出點坐標.試題解析:(1)把點A(3,1),點C(0,4)代入二次函數y=﹣x2+bx+c得,解得∴二次函數解析式為y=﹣x2+2x+4,配方得y=﹣(x﹣1)2+5,∴點M的坐標為(1,5);(2)設直線AC解析式為y=kx+b,把點A(3,1),C(0,4)代入得,解得:∴直線AC的解析式為y=﹣x+4,如圖所示,對稱軸直線x=1與△ABC兩邊分別交于點E、點F把x=1代入直線AC解析式y=﹣x+4解得y=3,則點E坐標為(1,3),點F坐標為(1,1)∴1<5﹣m<3,解得2<m<4;(3)連接MC,作MG⊥y軸并延長交AC于點N,則點G坐標為(0,5)∵MG=1,GC=5﹣4=1∴MC==,把y=5代入y=﹣x+4解得x=﹣1,則點N坐標為(﹣1,5),∵NG=GC,GM=GC,∴∠NCG=∠GCM=45°,∴∠NCM=90°,由此可知,若點P在AC上,則∠MCP=90°,則點D與點C必為相似三角形對應點①若有△PCM∽△BDC,則有∵BD=1,CD=3,∴CP===,∵CD=DA=3,∴∠DCA=45°,若點P在y軸右側,作PH⊥y軸,∵∠PCH=45°,CP=∴PH==把x=代入y=﹣x+4,解得y=,∴P1();同理可得,若點P在y軸左側,則把x=﹣代入y=﹣x+4,解得y=∴P2();②若有△PCM∽△CDB,則有∴CP==3∴PH=3÷=3,若點P在y軸右側,把x=3代入y=﹣x+4,解得y=1;若點P在y軸左側,把x=﹣3代入y=﹣x+4,解得y=7∴P3(3,1);P4(﹣3,7).∴所有符合題意得點P坐標有4個,分別為P1(),P2(),P3(3,1),P4(﹣3,7).考點:二次函數綜合題21、(1)作圖見解析(2)為等腰三角形【解析】
(1)作角平分線,以B點為圓心,任意長為半徑,畫圓弧;交直線AB于1點,直線BC于2點,再以2點為圓心,任意長為半徑,畫圓弧,再以1點為圓心,任意長為半徑,畫圓弧,相交于3點,連接3點和O點,直線3O即是已知角AOB的對稱中心線.(2)分別求出的三個角,看是否有兩個角相等,進而判斷是否為等腰三角形.【詳解】(1)具體如下:(2)在等腰中,,BD為∠ABC的平分線,故,,那么在中,∵∴是否為等腰三角形.【點睛】本題考查角平分線的作法,以及判定等腰三角形的方法.熟悉了解角平分線的定義以及等腰三角形的判定方法是解題的關鍵所在.22、(1)B,C;(2)2;(3)該校身高在165≤x<175之間的學生約有462人.【解析】
根據直方圖即可求得男生的眾數和中位數,求得男生的總人數,就是女生的總人數,然后乘以對應的百分比即可求解.【詳解】解:(1)∵直方圖中,B組的人數為12,最多,∴男生的身高的眾數在B組,男生總人數為:4+12+10+8+6=40,按照從低到高的順序,第20、21兩人都在C組,∴男生的身高的中位數在C組,故答案為B,C;(2)女生身高在E組的百分比為:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的樣本中,男生、女生的人數相同,∴樣本中,女生身高在E組的人數有:40×5%=2(人),故答案為2;(3)600×+480×(25%+15%)=270+192=462(人).答:該校身高在165≤x<175之間的學生約有462人.【點睛】考查頻數(率)分布直方圖,頻數(率)分布表,扇形統計圖,中位數,眾數,比較基礎,掌握計算方法是解題的關鍵.23、(1)拋物線的解析式為;(2)12;(1)滿足條件的點有F1(,0),F2(,0),F1(,0),F4(,0).【解析】分析:(1)根據對稱軸方程求得b=﹣4a,將點A的坐標代入函數解析式求得9a+1b+1=0,聯立方程組,求得系數的值即可;(2)拋物線在平移的過程中,線段BC所掃過的面積為平行四邊形BCDE的面積,根據二次函數圖象上點的坐標特征和三角形的面積得到:∴.(1)聯結CE.分類討論:(i)當CE為矩形的一邊時,過點C作CF1⊥CE,交x軸于點F1,設點F1(a,0).在Rt△OCF1中,利用勾股定理求得a的值;(ii)當CE為矩形的對角線時,以點O為圓心,OC長為半徑畫弧分別交x軸于點F1、F4,利用圓的性質解答.詳解:(1)∵頂點C在直線x=2上,∴,∴b=﹣4a.將A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=﹣4,∴拋物線的解析式為y=x2﹣4x+1.(2)過點C作CM⊥x軸,CN⊥y軸,垂足分別為M、N.∵y=x2﹣4x+1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司采購價格管理制度
- 娛樂設備器材管理制度
- 實驗標本出境管理制度
- 安全隱患整改管理制度
- 大堂保安狀態管理制度
- 市場刀具使用管理制度
- 公園室外消防管理制度
- 巡察整改合同管理制度
- 工地鑰匙使用管理制度
- 工廠薪酬制度管理制度
- 心理學在船舶安全管理中的應用
- JJF(鄂) 90-2021 電子輥道秤校準規范(高清版)
- 超星爾雅學習通《今天的日本》章節測試含答案
- 組態王雙機熱備
- 餐飲量化分級
- 三一重工SCC2000履帶吊履帶式起重機技術參數
- [精品]GA38-2004《銀行營業場所風險等級和防護級別的規定》
- 剪紙教學課件53489.ppt
- 千斤頂詳細設計
- CIGS薄膜太陽能電池工藝流程
- 搖粒機安全操作規程
評論
0/150
提交評論