廣西博白縣2024年中考數學全真模擬試題含解析_第1頁
廣西博白縣2024年中考數學全真模擬試題含解析_第2頁
廣西博白縣2024年中考數學全真模擬試題含解析_第3頁
廣西博白縣2024年中考數學全真模擬試題含解析_第4頁
廣西博白縣2024年中考數學全真模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西博白縣2024年中考數學全真模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知M=9x2-4x+3,N=5x2+4x-2,則M與N的大小關系是()A.M>N B.M=N C.M<N D.不能確定2.下列說法:①平分弦的直徑垂直于弦;②在n次隨機實驗中,事件A出現m次,則事件A發生的頻率,就是事件A的概率;③各角相等的圓外切多邊形一定是正多邊形;④各角相等的圓內接多邊形一定是正多邊形;⑤若一個事件可能發生的結果共有n種,則每一種結果發生的可能性是.其中正確的個數()A.1 B.2 C.3 D.43.已知函數y=ax2+bx+c的圖象如圖所示,則關于x的方程ax2+bx+c﹣4=0的根的情況是A.有兩個相等的實數根 B.有兩個異號的實數根C.有兩個不相等的實數根 D.沒有實數根4.如圖,△ABC為等腰直角三角形,∠C=90°,點P為△ABC外一點,CP=,BP=3,AP的最大值是()A.+3 B.4 C.5 D.35.在聯歡會上,甲、乙、丙3人分別站在不在同一直線上的三點A、B、C上,他們在玩搶凳子的游戲,要在他們中間放一個木凳,誰先搶到凳子誰獲勝,為使游戲公平,凳子應放的最恰當的位置是△ABC的()A.三條高的交點 B.重心 C.內心 D.外心6.填在下面各正方形中的四個數之間都有相同的規律,根據這種規律,m的值應是()A.110 B.158 C.168 D.1787.如果,那么代數式的值是()A.6 B.2 C.-2 D.-68.如圖是我市4月1日至7日一周內“日平均氣溫變化統計圖”,在這組數據中,眾數和中位數分別是()A.13;13 B.14;10 C.14;13 D.13;149.如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B,C).若線段AD長為正整數,則點D的個數共有()A.5個 B.4個 C.3個 D.2個10.已知,代數式的值為()A.-11 B.-1 C.1 D.11二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在正方形ABCD中,E是AB上一點,BE=2,AE=3BE,P是AC上一動點,則PB+PE的最小值是.12.如圖,若點的坐標為,則=________.13.函數y=的自變量x的取值范圍為____________.14.如圖,已知直線y=x+4與雙曲線y=(x<0)相交于A、B兩點,與x軸、y軸分別相交于D、C兩點,若AB=2,則k=_____.15.圖甲是小明設計的帶菱形圖案的花邊作品,該作品由形如圖乙的矩形圖案拼接而成(不重疊,無縫隙).圖乙種,,EF=4cm,上下兩個陰影三角形的面積之和為54cm2,其內部菱形由兩組距離相等的平行線交叉得到,則該菱形的周長為___cm16.已知二次函數與一次函數的圖象相交于點,如圖所示,則能使成立的x的取值范圍是______.17.內接于圓,設,圓的半徑為,則所對的劣弧長為_____(用含的代數式表示).三、解答題(共7小題,滿分69分)18.(10分)如圖,過點A(2,0)的兩條直線,分別交y軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.求點B的坐標;若△ABC的面積為4,求的解析式.19.(5分)某射擊隊教練為了了解隊員訓練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統計如下:命中環數678910甲命中相應環數的次數01310乙命中相應環數的次數20021(1)根據上述信息可知:甲命中環數的中位數是_____環,乙命中環數的眾數是______環;

(2)試通過計算說明甲、乙兩人的成績誰比較穩定?

(3)如果乙再射擊1次,命中8環,那么乙射擊成績的方差會變小.(填“變大”、“變小”或“不變”)20.(8分)解方程組21.(10分)如圖,在△ABC中,AB=AC,D為BC的中點,DE⊥AB,DF⊥AC,垂足分別為E、F,求證:DE=DF.22.(10分)如圖,已知點A,B,C在半徑為4的⊙O上,過點C作⊙O的切線交OA的延長線于點D.(Ⅰ)若∠ABC=29°,求∠D的大小;(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于點E,求:①BE的長;②四邊形ABCD的面積.23.(12分)如圖,矩形中,點是線段上一動點,為的中點,的延長線交BC于.(1)求證:;(2)若,,從點出發,以l的速度向運動(不與重合).設點運動時間為,請用表示的長;并求為何值時,四邊形是菱形.24.(14分)如圖,△ABC與△A1B1C1是位似圖形.(1)在網格上建立平面直角坐標系,使得點A的坐標為(-6,-1),點C1的坐標為(-3,2),則點B的坐標為____________;(2)以點A為位似中心,在網格圖中作△AB2C2,使△AB2C2和△ABC位似,且位似比為1∶2;(3)在圖上標出△ABC與△A1B1C1的位似中心P,并寫出點P的坐標為________,計算四邊形ABCP的周長為_______.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

若比較M,N的大小關系,只需計算M-N的值即可.【詳解】解:∵M=9x2-4x+3,N=5x2+4x-2,∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,∴M>N.故選A.【點睛】本題的主要考查了比較代數式的大小,可以讓兩者相減再分析情況.2、A【解析】

根據垂徑定理、頻率估計概率、圓的內接多邊形、外切多邊形的性質與正多邊形的定義、概率的意義逐一判斷可得.【詳解】①平分弦(不是直徑)的直徑垂直于弦,故此結論錯誤;②在n次隨機實驗中,事件A出現m次,則事件A發生的頻率,試驗次數足夠大時可近似地看做事件A的概率,故此結論錯誤;③各角相等的圓外切多邊形是正多邊形,此結論正確;④各角相等的圓內接多邊形不一定是正多邊形,如圓內接矩形,各角相等,但不是正多邊形,故此結論錯誤;⑤若一個事件可能發生的結果共有n種,再每種結果發生的可能性相同是,每一種結果發生的可能性是.故此結論錯誤;故選:A.【點睛】本題主要考查命題的真假,解題的關鍵是掌握垂徑定理、頻率估計概率、圓的內接多邊形、外切多邊形的性質與正多邊形的定義、概率的意義.3、A【解析】

根據拋物線的頂點坐標的縱坐標為4,判斷方程ax2+bx+c﹣4=0的根的情況即是判斷函數y=ax2+bx+c的圖象與直線y=4交點的情況.【詳解】∵函數的頂點的縱坐標為4,∴直線y=4與拋物線只有一個交點,∴方程ax2+bx+c﹣4=0有兩個相等的實數根,故選A.【點睛】本題考查了二次函數與一元二次方程,熟練掌握一元二次方程與二次函數間的關系是解題的關鍵.4、C【解析】

過點C作,且CQ=CP,連接AQ,PQ,證明≌根據全等三角形的性質,得到根據等腰直角三角形的性質求出PQ的長度,進而根據,即可解決問題.【詳解】過點C作,且CQ=CP,連接AQ,PQ,在和中≌AP的最大值是5.故選:C.【點睛】考查全等三角形的判定與性質,三角形的三邊關系,作出輔助線是解題的關鍵.5、D【解析】

為使游戲公平,要使凳子到三個人的距離相等,于是利用線段垂直平分線上的點到線段兩端的距離相等可知,要放在三邊中垂線的交點上.【詳解】∵三角形的三條垂直平分線的交點到中間的凳子的距離相等,∴凳子應放在△ABC的三條垂直平分線的交點最適當.故選D.【點睛】本題主要考查了線段垂直平分線的性質的應用;利用所學的數學知識解決實際問題是一種能力,要注意培養.想到要使凳子到三個人的距離相等是正確解答本題的關鍵.6、B【解析】根據排列規律,10下面的數是12,10右面的數是14,∵8=2×4?0,22=4×6?2,44=6×8?4,∴m=12×14?10=158.故選C.7、A【解析】【分析】將所求代數式先利用單項式乘多項式法則、平方差公式進行展開,然后合并同類項,最后利用整體代入思想進行求值即可.【詳解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故選A.【點睛】本題考查了代數式求值,涉及到單項式乘多項式、平方差公式、合并同類項等,利用整體代入思想進行解題是關鍵.8、C【解析】

根據統計圖,利用眾數與中位數的概念即可得出答案.【詳解】從統計圖中可以得出這一周的氣溫分別是:12,15,14,10,13,14,11所以眾數為14;將氣溫按從低到高的順序排列為:10,11,12,13,14,14,15所以中位數為13故選:C.【點睛】本題主要考查中位數和眾數,掌握中位數和眾數的求法是解題的關鍵.9、C【解析】試題分析:過A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是線段BC上的動點(不含端點B,C),∴AE≤AD<AB,即3≤AD<5,∵AD為正整數,∴AD=3或AD=4,當AD=4時,E的左右兩邊各有一個點D滿足條件,∴點D的個數共有3個.故選C.考點:等腰三角形的性質;勾股定理.10、D【解析】

根據整式的運算法則,先利用已知求出a的值,再將a的值帶入所要求解的代數式中即可得到此題答案.【詳解】解:由題意可知:,原式故選:D.【點睛】此題考查整式的混合運算,解題的關鍵在于利用整式的運算法則進行化簡求得代數式的值二、填空題(共7小題,每小題3分,滿分21分)11、10【解析】

由正方形性質的得出B、D關于AC對稱,根據兩點之間線段最短可知,連接DE,交AC于P,連接BP,則此時PB+PE的值最小,進而利用勾股定理求出即可.【詳解】如圖,連接DE,交AC于P,連接BP,則此時PB+PE的值最小.∵四邊形ABCD是正方形,∴B、D關于AC對稱,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案為10.12、【解析】

根據勾股定理,可得OA的長,根據正弦是對邊比斜邊,可得答案.【詳解】如圖,由勾股定理,得:OA==1.sin∠1=,故答案為.13、x≥-1【解析】試題分析:由題意得,x+1≥0,解得x≥﹣1.故答案為x≥﹣1.考點:函數自變量的取值范圍.14、-3【解析】設A(a,a+4),B(c,c+4),則解得:x+4=,即x2+4x?k=0,∵直線y=x+4與雙曲線y=相交于A、B兩點,∴a+c=?4,ac=-k,∴(c?a)2=(c+a)2?4ac=16+4k,∵AB=,∴由勾股定理得:(c?a)2+[c+4?(a+4)]2=()2,2(c?a)2=8,(c?a)2=4,∴16+4k=4,解得:k=?3,故答案為?3.點睛:本題考查了一次函數與反比例函數的交點問題、根與系數的關系、勾股定理、圖象上點的坐標特征等,題目具有一定的代表性,綜合性強,有一定難度.15、【解析】試題分析:根據,EF=4可得:AB=和BC的長度,根據陰影部分的面積為54可得陰影部分三角形的高,然后根據菱形的性質可以求出小菱形的邊長為,則菱形的周長為:×4=.考點:菱形的性質.16、x<-2或x>1【解析】試題分析:根據函數圖象可得:當時,x<-2或x>1.考點:函數圖象的性質17、或【解析】

分0°<x°≤90°、90°<x°≤180°兩種情況,根據圓周角定理求出∠DOC,根據弧長公式計算即可.【詳解】解:當0°<x°≤90°時,如圖所示:連接OC,

由圓周角定理得,∠BOC=2∠A=2x°,

∴∠DOC=180°-2x°,

∴∠OBC所對的劣弧長=,

當90°<x°≤180°時,同理可得,∠OBC所對的劣弧長=.

故答案為:或.【點睛】本題考查了三角形的外接圓與外心、弧長的計算,掌握弧長公式、圓周角定理是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)(0,3);(2).【解析】

(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出點B的坐標;(2)由=BC?OA,得到BC=4,進而得到C(0,-1).設的解析式為,把A(2,0),C(0,-1)代入即可得到的解析式.【詳解】(1)在Rt△AOB中,∵,∴,∴OB=3,∴點B的坐標是(0,3).(2)∵=BC?OA,∴BC×2=4,∴BC=4,∴C(0,-1).設的解析式為,把A(2,0),C(0,-1)代入得:,∴,∴的解析式為是.考點:一次函數的性質.19、(1)8,6和9;(2)甲的成績比較穩定;(3)變小【解析】

(1)根據眾數、中位數的定義求解即可;

(2)根據平均數的定義先求出甲和乙的平均數,再根據方差公式求出甲和乙的方差,然后進行比較,即可得出答案;

(3)根據方差公式進行求解即可.【詳解】解:(1)把甲命中環數從小到大排列為7,8,8,8,9,最中間的數是8,則中位數是8;

在乙命中環數中,6和9都出現了2次,出現的次數最多,則乙命中環數的眾數是6和9;

故答案為8,6和9;

(2)甲的平均數是:(7+8+8+8+9)÷5=8,

則甲的方差是:[(7-8)2+3(8-8)2+(9-8)2]=0.4,

乙的平均數是:(6+6+9+9+10)÷5=8,

則甲的方差是:[2(6-8)2+2(9-8)2+(10-8)2]=2.8,

所以甲的成績比較穩定;

(3)如果乙再射擊1次,命中8環,那么乙的射擊成績的方差變小.

故答案為變小.【點睛】本題考查了方差:一組數據中各數據與它們的平均數的差的平方的平均數,叫做這組數據的方差.方差通常用s2來表示,計算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩定性也越小;反之,則它與其平均值的離散程度越小,穩定性越好.也考查了算術平均數、中位數和眾數.20、【解析】解:由①得③把③代入②得把代人③得∴原方程組的解為21、答案見解析【解析】由于AB=AC,那么∠B=∠C,而DE⊥AC,DF⊥AB可知∠BFD=∠CED=90°,又D是BC中點,可知BD=CD,利用AAS可證△BFD≌△CED,從而有DE=DF.22、(1)∠D=32°;(2)①BE=;②【解析】

(Ⅰ)連接OC,CD為切線,根據切線的性質可得∠OCD=90°,根據圓周角定理可得∠AOC=2∠ABC=29°×2=58°,根據直角三角形的性質可得∠D的大小.(Ⅱ)①根據∠D=30°,得到∠DOC=60°,根據∠BAO=15°,可以得出∠AOB=150°,進而證明△OBC為等腰直角三角形,根據等腰直角三角形的性質得出根據圓周角定理得出根據含角的直角三角形的性質即可求出BE的長;②根據四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB進行計算即可.【詳解】(Ⅰ)連接OC,∵CD為切線,∴OC⊥CD,∴∠OCD=90°,∵∠AOC=2∠ABC=29°×2=58°,∴∠D=90°﹣58°=32°;(Ⅱ)①連接OB,在Rt△OCD中,∵∠D=30°,∴∠DOC=60°,∵∠BAO=15°,∴∠OBA=15°,∴∠AOB=150°,∴∠OBC=150°﹣60°=90°,∴△OBC為等腰直角三角形,∴∵在Rt△CBE中,∴②作BH⊥OA于H,如圖,∵∠BOH=180°﹣∠AOB=30°,∴∴四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB【點睛】考查切線的性質,圓周角定理,等腰直角三角形的判定與性質,含角的等腰直角三角形的性質,三角形的面積公式等,題目比較典型,綜合性比較強,難度適中.23、(1)證明見解析;(2)PD=8-t,運動時間為秒時,四邊形PBQD是菱形.【解析】

(1)先根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論