




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省合肥十一中2025屆高三第二學期期末數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,是單位向量,若,則()A. B. C. D.2.已知,,為圓上的動點,,過點作與垂直的直線交直線于點,若點的橫坐標為,則的取值范圍是()A. B. C. D.3.已知雙曲線C:=1(a>0,b>0)的右焦點為F,過原點O作斜率為的直線交C的右支于點A,若|OA|=|OF|,則雙曲線的離心率為()A. B. C.2 D.+14.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.5.設是定義在實數集上的函數,滿足條件是偶函數,且當時,,則,,的大小關系是()A. B. C. D.6.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.7.設變量滿足約束條件,則目標函數的最大值是()A.7 B.5 C.3 D.28.已知函數,若函數有三個零點,則實數的取值范圍是()A. B. C. D.9.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準線的拋物線經過,設球的半徑分別為,則()A. B. C. D.10.設為非零向量,則“”是“與共線”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件11.已知,則()A. B. C. D.212.已知隨機變量滿足,,.若,則()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中所有項的系數和為______,常數項為______.14.四面體中,底面,,,則四面體的外接球的表面積為______15.某校共有師生1600人,其中教師有1000人,現用分層抽樣的方法,從所有師生中抽取一個容量為80的樣本,則抽取學生的人數為_____.16.集合,,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)求曲線在點處的切線方程;(2)若對任意的,當時,都有恒成立,求最大的整數.(參考數據:)18.(12分)在極坐標系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標,直線的參數方程為(為參數),與交于,兩點.(1)寫出曲線的直角坐標方程和直線的普通方程;(2)設點;若、、成等比數列,求的值19.(12分)如圖,在直角中,,,,點在線段上.(1)若,求的長;(2)點是線段上一點,,且,求的值.20.(12分)已知函數.(1)若在上單調遞增,求實數的取值范圍;(2)若,對,恒有成立,求實數的最小值.21.(12分)設數列的前列項和為,已知.(1)求數列的通項公式;(2)求證:.22.(10分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點P在棱DF上.(1)若P是DF的中點,求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長度.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
設,根據題意求出的值,代入向量夾角公式,即可得答案;【詳解】設,,是單位向量,,,,聯立方程解得:或當時,;當時,;綜上所述:.故選:C.【點睛】本題考查向量的模、夾角計算,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意的兩種情況.2、A【解析】
由題意得,即可得點M的軌跡為以A,B為左、右焦點,的雙曲線,根據雙曲線的性質即可得解.【詳解】如圖,連接OP,AM,由題意得,點M的軌跡為以A,B為左、右焦點,的雙曲線,.故選:A.【點睛】本題考查了雙曲線定義的應用,考查了轉化化歸思想,屬于中檔題.3、B【解析】
以為圓心,以為半徑的圓的方程為,聯立,可求出點,則,整理計算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯立,取第一象限的解得,即,則,整理得,則(舍去),,.故選:B.【點睛】本題考查雙曲線離心率的求解,考查學生的計算能力,是中檔題.4、B【解析】
三視圖對應的幾何體為如圖所示的幾何體,利用割補法可求其體積.【詳解】根據三視圖可得原幾何體如圖所示,它是一個圓柱截去上面一塊幾何體,把該幾何體補成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【點睛】本題考查三視圖以及不規則幾何體的體積,復原幾何體時注意三視圖中的點線關系與幾何體中的點、線、面的對應關系,另外,不規則幾何體的體積可用割補法來求其體積,本題屬于基礎題.5、C【解析】∵y=f(x+1)是偶函數,∴f(-x+1)=f(x+1),即函數f(x)關于x=1對稱.
∵當x≥1時,為減函數,∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,
故選C6、D【解析】
先根據三視圖還原幾何體是一個四棱錐,根據三視圖的數據,計算各棱的長度.【詳解】根據三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應用,還考查了空間想象和運算求解的能力,屬于中檔題.7、B【解析】
由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優解,聯立方程組求得最優解的坐標,把最優解的坐標代入目標函數得結論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當直經過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規劃中,利用可行域求目標函數的最值,屬于簡單題.求目標函數最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數對應的最優解對應點(在可行域內平移變形后的目標函數,最先通過或最后通過的頂點就是最優解);(3)將最優解坐標代入目標函數求出最值.8、B【解析】
根據所給函數解析式,畫出函數圖像.結合圖像,分段討論函數的零點情況:易知為的一個零點;對于當時,由代入解析式解方程可求得零點,結合即可求得的范圍;對于當時,結合導函數,結合導數的幾何意義即可判斷的范圍.綜合后可得的范圍.【詳解】根據題意,畫出函數圖像如下圖所示:函數的零點,即.由圖像可知,,所以是的一個零點,當時,,若,則,即,所以,解得;當時,,則,且若在時有一個零點,則,綜上可得,故選:B.【點睛】本題考查了函數圖像的畫法,函數零點定義及應用,根據零點個數求參數的取值范圍,導數的幾何意義應用,屬于中檔題.9、D【解析】
由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內切于正方體,設,兩球球心和公切點都在體對角線上,通過幾何關系可轉化出,進而求解【詳解】根據拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內切于正方體,不妨設,兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【點睛】本題考查立體圖與平面圖的轉化,拋物線幾何性質的使用,內切球的性質,數形結合思想,轉化思想,直觀想象與數學運算的核心素養10、A【解析】
根據向量共線的性質依次判斷充分性和必要性得到答案.【詳解】若,則與共線,且方向相同,充分性;當與共線,方向相反時,,故不必要.故選:.【點睛】本題考查了向量共線,充分不必要條件,意在考查學生的推斷能力.11、B【解析】
結合求得的值,由此化簡所求表達式,求得表達式的值.【詳解】由,以及,解得..故選:B【點睛】本小題主要考查利用同角三角函數的基本關系式化簡求值,考查二倍角公式,屬于中檔題.12、B【解析】
根據二項分布的性質可得:,再根據和二次函數的性質求解.【詳解】因為隨機變量滿足,,.所以服從二項分布,由二項分布的性質可得:,因為,所以,由二次函數的性質可得:,在上單調遞減,所以.故選:B【點睛】本題主要考查二項分布的性質及二次函數的性質的應用,還考查了理解辨析的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、3-260【解析】
(1)令求得所有項的系數和;(2)先求出展開式中的常數項與含的系數,再求展開式中的常數項.【詳解】將代入,得所有項的系數和為3.因為的展開式中含的項為,的展開式中含常數項,所以的展開式中的常數項為.故答案為:3;-260【點睛】本題考查利用二項展開式的通項公式解決二項展開式的特殊項問題,屬于基礎題.14、【解析】
由題意畫出圖形,補形為長方體,求其對角線長,可得四面體外接球的半徑,則表面積可求.【詳解】解:如圖,在四面體中,底面,,,可得,補形為長方體,則過一個頂點的三條棱長分別為1,1,,則長方體的對角線長為,則三棱錐的外接球的半徑為1.其表面積為.故答案為:.【點睛】本題考查多面體外接球表面積的求法,補形是關鍵,屬于中檔題.15、1【解析】
直接根據分層抽樣的比例關系得到答案.【詳解】分層抽樣的抽取比例為,∴抽取學生的人數為6001.故答案為:1.【點睛】本題考查了分層抽樣的計算,屬于簡單題.16、【解析】
分析出集合A為奇數構成的集合,即可求得交集.【詳解】因為表示為奇數,故.故答案為:【點睛】此題考查求集合的交集,根據已知集合求解,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)2【解析】
(1)先求得切點坐標,利用導數求得切線的斜率,由此求得切線方程.(2)對分成,兩種情況進行分類討論.當時,將不等式轉化為,構造函數,利用導數求得的最小值(設為)的取值范圍,由的得在上恒成立,結合一元二次不等式恒成立,判別式小于零列不等式,解不等式求得的取值范圍.【詳解】(1)已知函數,則處即為,又,,可知函數過點的切線為,即.(2)注意到,不等式中,當時,顯然成立;當時,不等式可化為令,則,,所以存在,使.由于在上遞增,在上遞減,所以是的唯一零點.且在區間上,遞減,在區間上,遞增,即的最小值為,令,則,將的最小值設為,則,因此原式需滿足,即在上恒成立,又,可知判別式即可,即,且可以取到的最大整數為2.【點睛】本小題主要考查利用導數求切線方程,考查利用導數研究不等式恒成立問題,考查化歸與轉化的數學思想方法,屬于難題.18、(1)曲線的直角坐標方程為,直線的普通方程為;(2)【解析】
(1)由極坐標與直角坐標的互化公式和參數方程與普通方程的互化,即可求解曲線的直角坐標方程和直線的普通方程;(2)把的參數方程代入拋物線方程中,利用韋達定理得,,可得到,根據因為,,成等比數列,列出方程,即可求解.【詳解】(1)由題意,曲線的極坐標方程可化為,又由,可得曲線的直角坐標方程為,由直線的參數方程為(為參數),消去參數,得,即直線的普通方程為;(2)把的參數方程代入拋物線方程中,得,由,設方程的兩根分別為,,則,,可得,.所以,,.因為,,成等比數列,所以,即,則,解得解得或(舍),所以實數.【點睛】本題主要考查了極坐標方程與直角坐標方程,以及參數方程與普通方程的互化,以及直線參數方程的應用,其中解答中熟記互化公式,合理應用直線的參數方程中參數的幾何意義是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.19、(1)3;(2).【解析】
(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程組即可.【詳解】(1)在中,已知,,,由正弦定理,得,解得.(2)因為,所以,解得.在中,由余弦定理得,,即,,故.【點睛】本題考查正余弦定理在解三角形中的應用,考查學生的計算能力,是一道中檔題.20、(1)(2)【解析】
(1)求得,根據已知條件得到在恒成立,由此得到在恒成立,利用分離常數法求得的取值范圍.(2)構造函數設,利用求二階導數的方法,結合恒成立,求得的取值范圍,由此求得的最小值.【詳解】(1)因為在上單調遞增,所以在恒成立,即在恒成立,當時,上式成立,當,有,需,而,,,,故綜上,實數的取值范圍是(2)設,,則,令,,在單調遞增,也就是在單調遞增,所以.當即時,,不符合;當即時,,符合當即時,根據零點存在定理,,使,有時,,在單調遞減,時,,在單調遞增,成立,故只需即可,有,得,符合綜上得,,實數的最小值為【點睛】本小題主要考查利用導數研究函數的單調性,考查利用導數研究不等式恒成立問題,考查化歸與轉化的數學思想方法,考查分類討論的數學思想方法,屬于難題.21、(1)(2)證明見解析【解析】
(1)由已知可得,構造等比數列即可求出通項公式;(2)當時,由,可求,時,由,可證,驗證時,不等式也成立,即可得證.【詳解】(1)由可得,,即,所以,解得,(2)當時,,,當時,,綜上,由可得遞增,,時;所以,綜上:故.【點睛】本題主要考查了遞推數列求通項公式,利用放縮法證明不等式,涉及等比數列的求和公式,屬于難題.22、(1).(2).【解析】
(1)以A為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課程復習2024年紡織機械操作證書考試試題及答案
- 酒店業務模式變革試題及答案
- 酒店客戶投訴處理試題及答案
- 紡織機械操作環境優化方案的探討試題及答案
- 明確主題電氣工程師資格證書考試試題及答案
- 焊接工藝基礎知識試題及答案
- 異常交通檢測與處理試題及答案
- 質檢標準與流程的相關試題及答案
- 品牌授權合作協議書二零二五年
- 探討焊接工程與其他工種的協作關系試題及答案
- 雷雨話劇第四幕雷雨第四幕劇本范文1
- 辦公設備維保服務投標方案
- 服裝終端店鋪淡旺場管理課件
- PQR-按ASME要求填寫的焊接工藝評定報告
- 醫院中央空調維保合同范本
- 部編版語文一年級下冊第六單元大單元教學任務群設計
- 12315投訴舉報電話文明用語
- JJG 646-2006移液器
- JJF 1109-2003跳動檢查儀校準規范
- GB/T 14211-2019機械密封試驗方法
- GB 40161-2021過濾機安全要求
評論
0/150
提交評論