2025屆甘肅省酒泉市敦煌中學高三下學期第四次模擬考試數學試題_第1頁
2025屆甘肅省酒泉市敦煌中學高三下學期第四次模擬考試數學試題_第2頁
2025屆甘肅省酒泉市敦煌中學高三下學期第四次模擬考試數學試題_第3頁
2025屆甘肅省酒泉市敦煌中學高三下學期第四次模擬考試數學試題_第4頁
2025屆甘肅省酒泉市敦煌中學高三下學期第四次模擬考試數學試題_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆甘肅省酒泉市敦煌中學高三下學期第四次模擬考試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如果,那么下列不等式成立的是()A. B.C. D.2.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:3.在復平面內,復數(為虛數單位)的共軛復數對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下列函數中,既是偶函數又在區間上單調遞增的是()A. B. C. D.5.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則6.某幾何體的三視圖如圖所示,其俯視圖是由一個半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.7.已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是()A. B. C. D.8.若復數滿足,復數的共軛復數是,則()A.1 B.0 C. D.9.已知集合,則等于()A. B. C. D.10.設為非零向量,則“”是“與共線”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件11.圓錐底面半徑為,高為,是一條母線,點是底面圓周上一點,則點到所在直線的距離的最大值是()A. B. C. D.12.已知點、.若點在函數的圖象上,則使得的面積為的點的個數為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,直線平面,垂足為,三棱錐的底面邊長和側棱長都為4,在平面內,是直線上的動點,則點到平面的距離為_______,點到直線的距離的最大值為_______.14.設為數列的前項和,若,,且,,則________.15.安排名男生和名女生參與完成項工作,每人參與一項,每項工作至少由名男生和名女生完成,則不同的安排方式共有________種(用數字作答).16.已知雙曲線的左右焦點分別為,過的直線與雙曲線左支交于兩點,,的內切圓的圓心的縱坐標為,則雙曲線的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數f(x)=ex-x2-kx(其中e為自然對數的底,k為常數)有一個極大值點和一個極小值點.(1)求實數k的取值范圍;(2)證明:f(x)的極大值不小于1.18.(12分)如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時,求二面角的余弦值.19.(12分)已知函數與的圖象關于直線對稱.(為自然對數的底數)(1)若的圖象在點處的切線經過點,求的值;(2)若不等式恒成立,求正整數的最小值.20.(12分)求下列函數的導數:(1)(2)21.(12分)已知都是大于零的實數.(1)證明;(2)若,證明.22.(10分)已知函數,其中為自然對數的底數.(1)若函數在區間上是單調函數,試求的取值范圍;(2)若函數在區間上恰有3個零點,且,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

利用函數的單調性、不等式的基本性質即可得出.【詳解】∵,∴,,,.故選:D.【點睛】本小題主要考查利用函數的單調性比較大小,考查不等式的性質,屬于基礎題.2.C【解析】

根據向量的數量積運算,由向量的關系,可得選項.【詳解】,,∴等價于,故選:C.【點睛】本題考查向量的數量積運算和命題的充分、必要條件,屬于基礎題.3.D【解析】

將復數化簡得,,即可得到對應的點為,即可得出結果.【詳解】,對應的點位于第四象限.故選:.【點睛】本題考查復數的四則運算,考查共軛復數和復數與平面內點的對應,難度容易.4.C【解析】

結合基本初等函數的奇偶性及單調性,結合各選項進行判斷即可.【詳解】A:為非奇非偶函數,不符合題意;B:在上不單調,不符合題意;C:為偶函數,且在上單調遞增,符合題意;D:為非奇非偶函數,不符合題意.故選:C.【點睛】本小題主要考查函數的單調性和奇偶性,屬于基礎題.5.C【解析】

根據空間中平行關系、垂直關系的相關判定和性質可依次判斷各個選項得到結果.【詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當垂直于的交線時才有,錯誤.故選:.【點睛】本題考查空間中線面關系、面面關系相關命題的辨析,關鍵是熟練掌握空間中的平行關系與垂直關系的相關命題.6.C【解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應選.7.C【解析】

設,,,,設直線的方程為:,與拋物線方程聯立,由△得,利用韋達定理結合已知條件得,,代入上式即可求出的取值范圍.【詳解】設直線的方程為:,,,,,聯立方程,消去得:,△,,且,,,線段的中點為,,,,,,,,把代入,得,,,故選:【點睛】本題主要考查了直線與拋物線的位置關系,考查了韋達定理的應用,屬于中檔題.8.C【解析】

根據復數代數形式的運算法則求出,再根據共軛復數的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點睛】本題主要考查復數代數形式的運算法則,考查共軛復數的概念,屬于基礎題.9.C【解析】

先化簡集合A,再與集合B求交集.【詳解】因為,,所以.故選:C【點睛】本題主要考查集合的基本運算以及分式不等式的解法,屬于基礎題.10.A【解析】

根據向量共線的性質依次判斷充分性和必要性得到答案.【詳解】若,則與共線,且方向相同,充分性;當與共線,方向相反時,,故不必要.故選:.【點睛】本題考查了向量共線,充分不必要條件,意在考查學生的推斷能力.11.C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉化求解的位置,推出結果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點是底面圓周上一點,在底面的射影為;,,過的軸截面如圖:,過作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點睛:本題考查空間點線面距離的求法,考查空間想象能力以及計算能力,解題的關鍵是作出軸截面圖形,屬中檔題.12.C【解析】

設出點的坐標,以為底結合的面積計算出點到直線的距離,利用點到直線的距離公式可得出關于的方程,求出方程的解,即可得出結論.【詳解】設點的坐標為,直線的方程為,即,設點到直線的距離為,則,解得,另一方面,由點到直線的距離公式得,整理得或,,解得或或.綜上,滿足條件的點共有三個.故選:C.【點睛】本題考查三角形面積的計算,涉及點到直線的距離公式的應用,考查運算求解能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

三棱錐的底面邊長和側棱長都為4,所以在平面的投影為的重心,利用解直角三角形,即可求出點到平面的距離;,可得點是以為直徑的球面上的點,所以到直線的距離為以為直徑的球面上的點到的距離,最大距離為分別過和的兩個平行平面間距離加半徑,即可求出結論.【詳解】邊長為,則中線長為,點到平面的距離為,點是以為直徑的球面上的點,所以到直線的距離為以為直徑的球面上的點到的距離,最大距離為分別過和的兩個平行平面間距離加半徑.又三棱錐的底面邊長和側棱長都為4,以下求過和的兩個平行平面間距離,分別取中點,連,則,同理,分別過做,直線確定平面,直線確定平面,則,同理,為所求,,,所以到直線最大距離為.故答案為:;.【點睛】本題考查空間中的距離、正四面體的結構特征,考查空間想象能力,屬于較難題.14.【解析】

由題可得,解得,所以,,上述兩式相減可得,即,因為,所以,即,所以數列是以為首項,為公差的等差數列,所以.15.1296【解析】

先從4個男生選2個一組,將4人分成三組,然后從4個女生選2個一組,將4人分成三組,然后全排列即可.【詳解】由于每項工作至少由名男生和名女生完成,則先從4個男生選2個一組,將4人分成三組,所以男生的排法共有,同理女生的排法共有,故不同的安排共有種.故答案為:1296【點睛】本題主要考查了排列組合的應用,考查了學生應用數學解決實際問題的能力.16.2【解析】

由題意畫出圖形,設內切圓的圓心為,圓分別切于,可得四邊形為正方形,再由圓的切線的性質結臺雙曲線的定義,求得的內切圓的圓心的縱坐標,結合已知列式,即可求得雙曲線的離心率.【詳解】設內切圓的圓心為,圓分別切于,連接,則,故四邊形為正方形,邊長為圓的半徑,由,,得,與重合,,,即——①,——②聯立①②解得:,又因圓心的縱坐標為,.故答案為:【點睛】本題考查雙曲線的幾何性質,考查數形結合思想與運算求解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析【解析】

(1)求出,記,問題轉化為方程有兩個不同解,求導,研究極值即可得結果;(2)由(1)知,在區間上存在極大值點,且,則可求出極大值,記,求導,求單調性,求出極值即可.【詳解】(1),由,記,,由,且時,,單調遞減,,時,,單調遞增,,由題意,方程有兩個不同解,所以;(2)解法一:由(1)知,在區間上存在極大值點,且,所以的極大值為,記,則,因為,所以,所以時,,單調遞減,時,,單調遞增,所以,即函數的極大值不小于1.解法二:由(1)知,在區間上存在極大值點,且,所以的極大值為,因為,,所以.即函數的極大值不小于1.【點睛】本題考查導數研究函數的單調性,極值,考查學生綜合分析能力與轉化能力,是一道中檔題.18.(1)見解析(2)【解析】

(1)利用面面垂直的性質定理證得平面,由此證得,根據圓的幾何性質證得,由此證得平面.(2)判斷出三棱錐的體積最大時點的位置.建立空間直角坐標系,通過平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)證明:因為平面平面是正方形,所以平面.因為平面,所以.因為點在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當點位于的中點時,的面積最大,三棱錐的體積也最大.不妨設,記中點為,以為原點,分別以的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,設平面的法向量為,則令,得.設平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.【點睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19.(1)e;(2)2.【解析】

(1)根據反函數的性質,得出,再利用導數的幾何意義,求出曲線在點處的切線為,構造函數,利用導數求出單調性,即可得出的值;(2)設,求導,求出的單調性,從而得出最大值為,結合恒成立的性質,得出正整數的最小值.【詳解】(1)根據題意,與的圖象關于直線對稱,所以函數的圖象與互為反函數,則,,設點,,又,當時,,曲線在點處的切線為,即,代入點,得,即,構造函數,當時,,當時,,且,當時,單調遞增,而,故存在唯一的實數根.(2)由于不等式恒成立,可設,所以,令,得.所以當時,;當時,,因此函數在是增函數,在是減函數.故函數的最大值為.令,因為,,又因為在是減函數.所以當時,.所以正整數的最小值為2.【點睛】本題考查導數的幾何意義和利用導數解決恒成立問題,涉及到單調性、構造函數法等,考查函數思想和計算能力.20.(1);(2).【解析】

(1)根據復合函數的求導法則可得結果.(2)同樣根據復合函數的求導法則可得結果.【詳解】(1)令,,則,而,,故.(2)令,,則,而,,故,化簡得到.【點睛】本題考查復合函數的導數,此類問題一般是先把函數分解為簡單函數的復合,再根據復合函數的求導法則可得所求的導數,本題屬于容易題.21.(1)答案見解析.(2)答案見解析【解析】

(1)利用基本不等式可得,兩式相加即可求解.(2)由(1)知,代入不等式,利用基本不等式即可求解.【詳解】(1)兩式相加得(2)由(1)知于是,.【點睛】本題考查了基本不等式的應用,屬于基礎題.22.(1);(2).【解析】

(1)求出,再求恒成立,以及恒成立時,的取值范圍;(2)由已知,在區間內恰有一個零點,轉化為在區間內恰有兩個零點,由(1)的結論對分類討論,根據單調性,結合零點存在性定理,即可求出結論.【詳解】(1)由題意得,則,當函數在區間上單調遞增時,在區間上恒成立.∴(其中),解得.當函數在區間上單調遞

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論