安徽馬鞍山中加雙語學校2025屆高三第二學期數學試題模擬考試卷(一)_第1頁
安徽馬鞍山中加雙語學校2025屆高三第二學期數學試題模擬考試卷(一)_第2頁
安徽馬鞍山中加雙語學校2025屆高三第二學期數學試題模擬考試卷(一)_第3頁
安徽馬鞍山中加雙語學校2025屆高三第二學期數學試題模擬考試卷(一)_第4頁
安徽馬鞍山中加雙語學校2025屆高三第二學期數學試題模擬考試卷(一)_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽馬鞍山中加雙語學校2025屆高三第二學期數學試題模擬考試卷(一)注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長度的集合,則()A.B.C.D.2.設直線過點,且與圓:相切于點,那么()A. B.3 C. D.13.已知,,由程序框圖輸出的為()A.1 B.0 C. D.4.設函數(,為自然對數的底數),定義在上的函數滿足,且當時,.若存在,且為函數的一個零點,則實數的取值范圍為()A. B. C. D.5.如圖所示,直三棱柱的高為4,底面邊長分別是5,12,13,當球與上底面三條棱都相切時球心到下底面距離為8,則球的體積為()A.1605π3 B.6426.執行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.7.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院校科研方陣.他們是由軍事科學院、國防大學、國防科技大學聯合組建.若已知甲、乙、丙三人來自上述三所學校,學歷分別有學士、碩士、博士學位.現知道:①甲不是軍事科學院的;②來自軍事科學院的不是博士;③乙不是軍事科學院的;④乙不是博士學位;⑤國防科技大學的是研究生.則丙是來自哪個院校的,學位是什么()A.國防大學,研究生 B.國防大學,博士C.軍事科學院,學士 D.國防科技大學,研究生8.已知函數在區間上恰有四個不同的零點,則實數的取值范圍是()A. B. C. D.9.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個單位長度后得到的圖象關于軸對稱;③若在上恰有7個零點,則的取值范圍為;④若在上單調遞增,則的取值范圍為.其中,判斷正確的個數為()A.1 B.2 C.3 D.410.在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.11.1777年,法國科學家蒲豐在宴請客人時,在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個客人發許多等質量的,長度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對針落地的位置進行統計,發現共投針2212枚,與直線相交的有704枚.根據這次統計數據,若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.12.若樣本的平均數是10,方差為2,則對于樣本,下列結論正確的是()A.平均數為20,方差為4 B.平均數為11,方差為4C.平均數為21,方差為8 D.平均數為20,方差為8二、填空題:本題共4小題,每小題5分,共20分。13.李明自主創業,在網上經營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網上支付成功后,李明會得到支付款的80%.①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________.14.已知數列的前項和且,設,則的值等于_______________.15.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,則a1=_____,a1+a2+…+a5=____16.定義在封閉的平面區域內任意兩點的距離的最大值稱為平面區域的“直徑”.已知銳角三角形的三個點,,,在半徑為的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構成平面區域,則平面區域的“直徑”的最大值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某保險公司給年齡在歲的民眾提供某種疾病的一年期醫療保險,現從名參保人員中隨機抽取名作為樣本進行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應交納的保費如下表所示.據統計,該公司每年為這一萬名參保人員支出的各種費用為一百萬元.年齡(單位:歲)保費(單位:元)(1)用樣本的頻率分布估計總體分布,為使公司不虧本,求精確到整數時的最小值;(2)經調查,年齡在之間的老人每人中有人患該項疾病(以此頻率作為概率).該病的治療費為元,如果參保,保險公司補貼治療費元.某老人年齡歲,若購買該項保險(取中的).針對此疾病所支付的費用為元;若沒有購買該項保險,針對此疾病所支付的費用為元.試比較和的期望值大小,并判斷該老人購買此項保險是否劃算?18.(12分)設直線與拋物線交于兩點,與橢圓交于兩點,設直線(為坐標原點)的斜率分別為,若.(1)證明:直線過定點,并求出該定點的坐標;(2)是否存在常數,滿足?并說明理由.19.(12分)曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)過原點且傾斜角為的射線與曲線分別交于兩點(異于原點),求的取值范圍.20.(12分)已知函數().(1)討論的單調性;(2)若對,恒成立,求的取值范圍.21.(12分)某市為了鼓勵市民節約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過度的部分按元/度收費,超過度但不超過度的部分按元/度收費,超過度的部分按元/度收費.(I)求某戶居民用電費用(單位:元)關于月用電量(單位:度)的函數解析式;(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份戶居民每戶的用電量,統計分析后得到如圖所示的頻率分布直方圖,若這戶居民中,今年1月份用電費用不超過元的占,求,的值;(Ⅲ)在滿足(Ⅱ)的條件下,若以這戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數據用該組區間的中點代替,記為該居民用戶1月份的用電費用,求的分布列和數學期望.22.(10分)已知在平面四邊形中,的面積為.(1)求的長;(2)已知,為銳角,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

如圖所示:在邊長為的正方體中,四棱錐滿足條件,故,得到答案.【詳解】如圖所示:在邊長為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.【點睛】本題考查了三視圖,元素和集合的關系,意在考查學生的空間想象能力和計算能力.2.B【解析】

過點的直線與圓:相切于點,可得.因此,即可得出.【詳解】由圓:配方為,,半徑.∵過點的直線與圓:相切于點,∴;∴;故選:B.【點睛】本小題主要考查向量數量積的計算,考查圓的方程,屬于基礎題.3.D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點:1、程序框圖;2、定積分.4.D【解析】

先構造函數,由題意判斷出函數的奇偶性,再對函數求導,判斷其單調性,進而可求出結果.【詳解】構造函數,因為,所以,所以為奇函數,當時,,所以在上單調遞減,所以在R上單調遞減.因為存在,所以,所以,化簡得,所以,即令,因為為函數的一個零點,所以在時有一個零點因為當時,,所以函數在時單調遞減,由選項知,,又因為,所以要使在時有一個零點,只需使,解得,所以a的取值范圍為,故選D.【點睛】本題主要考查函數與方程的綜合問題,難度較大.5.A【解析】

設球心為O,三棱柱的上底面ΔA1B1C1的內切圓的圓心為O1,該圓與邊B【詳解】如圖,設三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設球心為O,則由球的幾何知識得ΔOO1M所以OM=2即球O的半徑為25所以球O的體積為43故選A.【點睛】本題考查與球有關的組合體的問題,解答本題的關鍵有兩個:(1)構造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內求出球的半徑,這是解決與球有關的問題時常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內切圓的半徑r=a+b-c6.C【解析】

根據程序框圖寫出幾次循環的結果,直到輸出結果是8時.【詳解】第一次循環:第二次循環:第三次循環:第四次循環:第五次循環:第六次循環:第七次循環:第八次循環:所以框圖中①處填時,滿足輸出的值為8.故選:C【點睛】此題考查算法程序框圖,根據循環條件依次寫出每次循環結果即可解決,屬于簡單題目.7.C【解析】

根據①③可判斷丙的院校;由②和⑤可判斷丙的學位.【詳解】由題意①甲不是軍事科學院的,③乙不是軍事科學院的;則丙來自軍事科學院;由②來自軍事科學院的不是博士,則丙不是博士;由⑤國防科技大學的是研究生,可知丙不是研究生,故丙為學士.綜上可知,丙來自軍事科學院,學位是學士.故選:C.【點睛】本題考查了合情推理的簡單應用,由條件的相互牽制判斷符合要求的情況,屬于基礎題.8.A【解析】

函數的零點就是方程的解,設,方程可化為,即或,求出的導數,利用導數得出函數的單調性和最值,由此可根據方程解的個數得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉化為,即,所以或.因為,當時,,單調遞減;當時,,單調遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數解,故在區間上恰有四個不相等的零點,需且.故選:A.【點睛】本題考查復合函數的零點.考查轉化與化歸思想,函數零點轉化為方程的解,方程的解再轉化為研究函數的性質,本題考查了學生分析問題解決問題的能力.9.B【解析】

對函數化簡可得,進而結合三角函數的最值、周期性、單調性、零點、對稱性及平移變換,對四個命題逐個分析,可選出答案.【詳解】因為,所以周期.對于①,因為,所以,即,故①錯誤;對于②,函數的圖象向右平移個單位長度后得到的函數為,其圖象關于軸對稱,則,解得,故對任意整數,,所以②錯誤;對于③,令,可得,則,因為,所以在上第1個零點,且,所以第7個零點,若存在第8個零點,則,所以,即,解得,故③正確;對于④,因為,且,所以,解得,又,所以,故④正確.故選:B.【點睛】本題考查三角函數的恒等變換,考查三角函數的平移變換、最值、周期性、單調性、零點、對稱性,考查學生的計算求解能力與推理能力,屬于中檔題.10.D【解析】

取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,,,即點O為的中心,三棱錐的外接球球心在直線BO上,設球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.【點睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.11.D【解析】

根據統計數據,求出頻率,用以估計概率.【詳解】.故選:D.【點睛】本題以數學文化為背景,考查利用頻率估計概率,屬于基礎題.12.D【解析】

由兩組數據間的關系,可判斷二者平均數的關系,方差的關系,進而可得到答案.【詳解】樣本的平均數是10,方差為2,所以樣本的平均數為,方差為.故選:D.【點睛】樣本的平均數是,方差為,則的平均數為,方差為.二、填空題:本題共4小題,每小題5分,共20分。13.130.15.【解析】

由題意可得顧客需要支付的費用,然后分類討論,將原問題轉化為不等式恒成立的問題可得的最大值.【詳解】(1),顧客一次購買草莓和西瓜各一盒,需要支付元.(2)設顧客一次購買水果的促銷前總價為元,元時,李明得到的金額為,符合要求.元時,有恒成立,即,即元.所以的最大值為.【點睛】本題主要考查不等式的概念與性質?數學的應用意識?數學式子變形與運算求解能力,以實際生活為背景,創設問題情境,考查學生身邊的數學,考查學生的數學建模素養.14.7【解析】

根據題意,當時,,可得,進而得數列為等比數列,再計算可得,進而可得結論.【詳解】由題意,當時,,又,解得,當時,由,所以,,即,故數列是以為首項,為公比的等比數列,故,又,,所以,.故答案為:.【點睛】本題考查了數列遞推關系、函數求值,考查了推理能力與計算能力,計算得是解決本題的關鍵,屬于中檔題.15.80211【解析】

由,利用二項式定理即可得,分別令、后,作差即可得.【詳解】由題意,則,令,得,令,得,故.故答案為:80,211.【點睛】本題考查了二項式定理的應用,屬于中檔題.16.【解析】

先找到平面區域內任意兩點的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點E,AC中點F,BC中點G,如圖所示顯然平面區域任意兩點距離最大值為,而,當且僅當時,等號成立.故答案為:.【點睛】本題考查正弦定理在平面幾何中的應用問題,涉及到距離的最值問題,在處理這類問題時,一定要數形結合,本題屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)30;(2),比較劃算.【解析】

(1)由頻率和為1求出,根據的值求出保費的平均值,然后解一元一次不等式即可求出結果,最后取近似值即可;(2)分別計算參保與不參保時的期望,,比較大小即可.【詳解】解:(1)由,解得.保險公司每年收取的保費為:∴要使公司不虧本,則,即解得∴.(2)①若該老人購買了此項保險,則的取值為∴(元).②若該老人沒有購買此項保險,則的取值為.∴(元).∴年齡為的該老人購買此項保險比較劃算.【點睛】本題考查學生利用相關統計圖表知識處理實際問題的能力,掌握頻率分布直方圖的基本性質,知道數學期望是平均數的另一種數學語言,為容易題.18.(1)證明見解析(0,2);(2)存在,理由見解析【解析】

(1)設直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過定點(2)由斜率公式分別求出,,聯立直線與拋物線,橢圓,再由根與系數的關系得,,,代入,,化簡即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過原點,故設由可得,.,,故所以直線l的方程為故直線l恒過定點.(2)由(1)知設由可得,,即存在常數滿足題意.【點睛】本題主要考查了直線與拋物線、橢圓的位置關系,直線過定點問題,考查學生分析解決問題的能力,屬于中檔題.19.(1),;(2).【解析】

(1)先將曲線化為普通方程,再由直角坐標系與極坐標系之間的轉化關系:,可得極坐標方程和曲線的直角坐標方程;(2)由已知可得出射線的極坐標方程為,聯立和的極坐標方程可得點A和點B的極坐標,從而得出,由的范圍可求得的取值范圍.【詳解】(1)曲線的普通方程為,即,其極坐標方程為;曲線的極坐標方程為,即,其直角坐標方程為;(2)射線的極坐標方程為,聯立,聯立,的取值范圍是【點睛】本題考查圓的參數方程與普通方程互化,圓,拋物線的極坐標方程與普通方程的互化,以及在極坐標下的直線與圓和拋物線的位置關系,屬于中檔題.20.(1)①當時,在上單調遞減,在上單調遞增;②當時,在上單調遞增;(2).【解析】

(1)求出函數的定義域和導函數,,對討論,得導函數的正負,得原函數的單調性;(2)法一:由得,分別運用導函數得出函數(),的單調性,和其函數的最值,可得,可得的范圍;法二:由得,化為令(),研究函數的單調性,可得的取值范圍.【詳解】(1)的定義域為,,①當時,由得,得,在上單調遞減,在上單調遞增;②當時,恒成立,在上單調遞增;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論