




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江蘇省大豐市新豐中學高三分班考試數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在條件下,目標函數的最大值為40,則的最小值是()A. B. C. D.22.設,,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件3.過拋物線的焦點作直線與拋物線在第一象限交于點A,與準線在第三象限交于點B,過點作準線的垂線,垂足為.若,則()A. B. C. D.4.已知等差數列中,,,則數列的前10項和()A.100 B.210 C.380 D.4005.已知函數,則()A.函數在上單調遞增 B.函數在上單調遞減C.函數圖像關于對稱 D.函數圖像關于對稱6.已知數列an滿足:an=2,n≤5a1A.16 B.17 C.18 D.197.已知二次函數的部分圖象如圖所示,則函數的零點所在區間為()A. B. C. D.8.已知集合,,則()A. B.C. D.9.連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當取得最大值時,雙曲線的離心率為()A. B. C. D.10.設,則復數的模等于()A. B. C. D.11.已知函數,若對任意,都有成立,則實數的取值范圍是()A. B. C. D.12.已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準線相切于點,,則拋物線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若實數,滿足,則的最小值為__________.14.如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,則此四棱錐的體積為_____.15.“石頭、剪子、布”是大家熟悉的二人游戲,其規則是:在石頭、剪子和布中,二人各隨機選出一種,若相同則平局;若不同,則石頭克剪子,剪子克布,布克石頭.甲、乙兩人玩一次該游戲,則甲不輸的概率是______.16.我國著名的數學家秦九韶在《數書九章》提出了“三斜求積術”.他把三角形的三條邊分別稱為小斜、中斜和大斜.三斜求積術就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數的一半,自乘而得一個數,小斜平方乘以大斜平方,送到上面得到的那個數,相減后余數被4除,所得的數作為“實”,1作為“隅”,開平方后即得面積.所謂“實”、“隅”指的是在方程中,p為“隅”,q為“實”.即若的大斜、中斜、小斜分別為a,b,c,則.已知點D是邊AB上一點,,,,,則的面積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直角梯形中,,,,為的中點,沿將折起,使得點到點位置,且,為的中點,是上的動點(與點,不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點,使得二面角的余弦值?若存在,確定點位置;若不存在,說明理由.18.(12分)已知數列滿足,且,,成等比數列.(1)求證:數列是等差數列,并求數列的通項公式;(2)記數列的前n項和為,,求數列的前n項和.19.(12分)設數列的前列項和為,已知.(1)求數列的通項公式;(2)求證:.20.(12分)已知的內角的對邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長是否有最大值?如果有,求出這個最大值,如果沒有,請說明理由.21.(12分)已知函數,其中.(1)函數在處的切線與直線垂直,求實數的值;(2)若函數在定義域上有兩個極值點,且.①求實數的取值范圍;②求證:.22.(10分)在直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若點在曲線上,點在曲線上,求的最小值及此時點的坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
畫出可行域和目標函數,根據平移得到最值點,再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標函數,根據圖像知:當時,有最大值為,即,故..當,即時等號成立.故選:.【點睛】本題考查了線性規劃中根據最值求參數,均值不等式,意在考查學生的綜合應用能力.2.A【解析】
根據對數的運算分別從充分性和必要性去證明即可.【詳解】若,,則,可得;若,可得,無法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【點睛】本題考查充要條件的定義,判斷充要條件的方法是:①若為真命題且為假命題,則命題p是命題q的充分不必要條件;②若為假命題且為真命題,則命題p是命題q的必要不充分條件;③若為真命題且為真命題,則命題p是命題q的充要條件;④若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.3.C【解析】
需結合拋物線第一定義和圖形,得為等腰三角形,設準線與軸的交點為,過點作,再由三角函數定義和幾何關系分別表示轉化出,,結合比值與正切二倍角公式化簡即可【詳解】如圖,設準線與軸的交點為,過點作.由拋物線定義知,所以,,,,所以.故選:C【點睛】本題考查拋物線的幾何性質,三角函數的性質,數形結合思想,轉化與化歸思想,屬于中檔題4.B【解析】
設公差為,由已知可得,進而求出的通項公式,即可求解.【詳解】設公差為,,,,.故選:B.【點睛】本題考查等差數列的基本量計算以及前項和,屬于基礎題.5.C【解析】
依題意可得,即函數圖像關于對稱,再求出函數的導函數,即可判斷函數的單調性;【詳解】解:由,,所以函數圖像關于對稱,又,在上不單調.故正確的只有C,故選:C【點睛】本題考查函數的對稱性的判定,利用導數判斷函數的單調性,屬于基礎題.6.B【解析】
由題意可得a1=a2=a3=a4=a5=2,累加法求得a62+【詳解】解:an即a1=an?6時,a1a1兩式相除可得1+a則an2=由a6a7…,ak2=可得aa1且a1正整數k(k?5)時,要使得a1則ak+1則k=17,故選:B.【點睛】本題考查與遞推數列相關的方程的整數解的求法,注意將題設中的遞推關系變形得到新的遞推關系,從而可簡化與數列相關的方程,本題屬于難題.7.B【解析】由函數f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據函數的零點存在性定理可知,函數g(x)的零點所在的區間是(0,1),故選B.8.C【解析】
求出集合,計算出和,即可得出結論.【詳解】,,,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎題.9.D【解析】
先求出四個頂點、四個焦點的坐標,四個頂點構成一個菱形,求出菱形的面積,四個焦點構成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標為,四個焦點的坐標為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當取得最大值時有,,離心率,故選:D.【點睛】該題考查的是有關雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.10.C【解析】
利用復數的除法運算法則進行化簡,再由復數模的定義求解即可.【詳解】因為,所以,由復數模的定義知,.故選:C【點睛】本題考查復數的除法運算法則和復數的模;考查運算求解能力;屬于基礎題.11.D【解析】
先將所求問題轉化為對任意恒成立,即得圖象恒在函數圖象的上方,再利用數形結合即可解決.【詳解】由得,由題意函數得圖象恒在函數圖象的上方,作出函數的圖象如圖所示過原點作函數的切線,設切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導數在不等式恒成立中的應用,考查了學生轉化與化歸思想以及數形結合的思想,是一道中檔題.12.C【解析】
根據拋物線方程求得點的坐標,根據軸、列方程,解方程求得的值.【詳解】不妨設在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數形結合的數學思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由約束條件先畫出可行域,然后求目標函數的最小值.【詳解】由約束條件先畫出可行域,如圖所示,由,即,當平行線經過點時取到最小值,由可得,此時,所以的最小值為.故答案為.【點睛】本題考查了線性規劃的知識,解題的一般步驟為先畫出可行域,然后改寫目標函數,結合圖形求出最值,需要掌握解題方法.14.【解析】
畫圖直觀圖可得該幾何體為棱錐,再計算高求解體積即可.【詳解】解:如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,此四棱錐中,是邊長為的正方形,是邊長為的等邊三角形,故,又,故平面平面,的高是四棱錐的高,此四棱錐的體積為:.故答案為:.【點睛】本題主要考查了四棱錐中的長度計算以及垂直的判定和體積計算等,需要根據題意15.【解析】
用樹狀圖法列舉出所有情況,得出甲不輸的結果數,再計算即得.【詳解】由題得,甲、乙兩人玩一次該游戲,共有9種情況,其中甲不輸有6種可能,故概率為.故答案為:【點睛】本題考查隨機事件的概率,是基礎題.16..【解析】
利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求積術”公式即可求得答案.【詳解】,所以,由余弦定理可知,得.根據“三斜求積術”可得,所以.【點睛】本題考查正切的和角公式,同角三角函數的基本關系式,余弦定理的應用,考查學生分析問題的能力和計算整理能力,難度較易.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析(Ⅱ)存在,此時為的中點.【解析】
(Ⅰ)證明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假設存在點滿足題意,過作于,平面,過作于,連接,則,過作于,連接,是二面角的平面角,設,,計算得到答案.【詳解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假設存在點滿足題意,過作于,由知,易證平面,所以平面,過作于,連接,則(三垂線定理),即是二面角的平面角,不妨設,則,在中,設(),由得,即,得,∴,依題意知,即,解得,此時為的中點.綜上知,存在點,使得二面角的余弦值,此時為的中點.【點睛】本題考查了面面垂直,根據二面角確定點的位置,意在考查學生的空間想象能力和計算能力,也可以建立空間直角坐標系解得答案.18.(1)見解析;(2)【解析】
(1)因為,所以,所以,所以數列是等差數列,設數列的公差為,由可得,因為成等比數列,所以,所以,所以,因為,所以,解得(舍去)或,所以,所以.(2)由(1)知,,所以,所以.19.(1)(2)證明見解析【解析】
(1)由已知可得,構造等比數列即可求出通項公式;(2)當時,由,可求,時,由,可證,驗證時,不等式也成立,即可得證.【詳解】(1)由可得,,即,所以,解得,(2)當時,,,當時,,綜上,由可得遞增,,時;所以,綜上:故.【點睛】本題主要考查了遞推數列求通項公式,利用放縮法證明不等式,涉及等比數列的求和公式,屬于難題.20.(Ⅰ);(Ⅱ)有最大值,最大值為3.【解析】
(Ⅰ)利用正弦定理將角化邊,再由余弦定理計算可得;(Ⅱ)由正弦定理可得,則,再根據正弦函數的性質計算可得;【詳解】(Ⅰ)由得再由正弦定理得因此,又因為,所以.(Ⅱ)當時,的周長有最大值,且最大值為3,理由如下:由正弦定理得,所以,所以.因為,所以,所以當即時,取到最大值2,所以的周長有最大值,最大值為3.【點睛】本題考查正弦定理、余弦定理解三角形,以及三角函數的性質的應用,屬于中檔題.21.(1);(2)①;②詳見解析.【解析】
(1)由函數在處的切線與直線垂直,即可得,對其求導并表示,代入上述方程即可解得答案;(2)①已知要求等價于在上有兩個根,且,即在上有兩個不相等的根,由二次函數的圖象與性質構建不等式組,解得答案,最后分析此時單調性推及極值說明即可;②由①可知,是方程的兩個不等的實根,由韋達定理可表達根與系數的關系,進而用含的式子表示,令,對求導分析單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 纖維板行業的國內外標準對比研究考核試卷
- 畜牧良種繁殖保險制度與風險管理考核試卷
- 時間的初一語文作文
- 玉米加工與糧食產后減損技術考核試卷
- 空中交通管制員視覺識別能力考核試卷
- 突發事件預防與應對策略考核試卷
- 站內公共服務設施完善與人性化設計實踐成果考核試卷
- 紡織品在農業領域的應用與創新考核試卷
- 小學100以內退位減法練習題(500條)
- 蘇州托普信息職業技術學院《大數據可視化技術》2023-2024學年第二學期期末試卷
- 2024員工質量意識培訓
- 《固體廢物處理與處置》大學筆記
- 醫療機構安全管理制度與實施細則
- 針刺傷預防與處理-2024中華護理學會團體標準
- 制造業生產流程手冊
- 2023年安徽公務員鄉鎮崗位面試真題及解析
- GB/T 12939-2024工業車輛輪輞規格系列
- 攜程在線能力測評真題
- 7.1文化的內涵和功能課件-高中政治統編版必修四哲學與文化
- 2024-2025學年上海中學高三下學期3月一模考試英語試題含解析
- 02幾何壓軸小題-【黃金沖刺】考前10天中考數學極限滿分沖刺(浙江專用)原卷版+解析
評論
0/150
提交評論