




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省長沙市岳麓區湖南師大附中2025年高三練習題一(全國卷I)數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為實現國民經濟新“三步走”的發展戰略目標,國家加大了扶貧攻堅的力度.某地區在2015年以前的年均脫貧率(脫離貧困的戶數占當年貧困戶總數的比)為.2015年開始,全面實施“精準扶貧”政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數占比(參加該項目戶數占2019年貧困戶總數的比)及該項目的脫貧率見下表:實施項目種植業養殖業工廠就業服務業參加用戶比脫貧率那么年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的()A.倍 B.倍 C.倍 D.倍2.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.3.已知,則下列關系正確的是()A. B. C. D.4.的展開式中的系數是-10,則實數()A.2 B.1 C.-1 D.-25.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.6.已知函數若函數在上零點最多,則實數的取值范圍是()A. B. C. D.7.已知實數、滿足不等式組,則的最大值為()A. B. C. D.8.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.9.為了進一步提升駕駛人交通安全文明意識,駕考新規要求駕校學員必須到街道路口執勤站崗,協助交警勸導交通.現有甲、乙等5名駕校學員按要求分配到三個不同的路口站崗,每個路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種10.已知函數的圖象與直線的相鄰交點間的距離為,若定義,則函數,在區間內的圖象是()A. B.C. D.11.由曲線圍成的封閉圖形的面積為()A. B. C. D.12.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.各項均為正數的等比數列中,為其前項和,若,且,則公比的值為_____.14.命題“”的否定是______.15.在平面直角坐標系中,雙曲線的焦距為,若過右焦點且與軸垂直的直線與兩條漸近線圍成的三角形面積為,則雙曲線的離心率為____________.16.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列中,,數列的前項和.(1)求;(2)若,求的前項和.18.(12分)在直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求的直角坐標方程和的直角坐標;(2)設與交于,兩點,線段的中點為,求.19.(12分)已知函數.若在定義域內存在,使得成立,則稱為函數的局部對稱點.(1)若a,且a≠0,證明:函數有局部對稱點;(2)若函數在定義域內有局部對稱點,求實數c的取值范圍;(3)若函數在R上有局部對稱點,求實數m的取值范圍.20.(12分)如圖,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點為的中點.(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值.(Ⅲ)在線段上是否存在一點,使直線與平面所成的角正弦值為,若存在求出的長,若不存在說明理由.21.(12分)在平面直角坐標系中,直線的參數方程為(為參數),以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)設直線與曲線交于,兩點,求;(Ⅱ)若點為曲線上任意一點,求的取值范圍.22.(10分)如圖,在長方體中,,為的中點,為的中點,為線段上一點,且滿足,為的中點.(1)求證:平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
設貧困戶總數為,利用表中數據可得脫貧率,進而可求解.【詳解】設貧困戶總數為,脫貧率,所以.故年的年脫貧率是實施“精準扶貧”政策前的年均脫貧率的倍.故選:B【點睛】本題考查了概率與統計,考查了學生的數據處理能力,屬于基礎題.2.D【解析】
本道題結合雙曲線的性質以及余弦定理,建立關于a與c的等式,計算離心率,即可.【詳解】結合題意,繪圖,結合雙曲線性質可以得到PO=MO,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故對三角形運用余弦定理,得到,而結合,可得,,代入上式子中,得到,結合離心率滿足,即可得出,故選D.【點睛】本道題考查了余弦定理以及雙曲線的性質,難度偏難.3.A【解析】
首先判斷和1的大小關系,再由換底公式和對數函數的單調性判斷的大小即可.【詳解】因為,,,所以,綜上可得.故選:A【點睛】本題考查了換底公式和對數函數的單調性,考查了推理能力與計算能力,屬于基礎題.4.C【解析】
利用通項公式找到的系數,令其等于-10即可.【詳解】二項式展開式的通項為,令,得,則,所以,解得.故選:C【點睛】本題考查求二項展開式中特定項的系數,考查學生的運算求解能力,是一道容易題.5.A【解析】
首先找出與面所成角,根據所成角所在三角形利用余弦定理求出所成角的余弦值,再根據同角三角函數關系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設中點為,連接,,可知,,同時易知,,所以面,故即為與面所成角,有,故.故選:A.【點睛】本題主要考查了空間幾何題中線面夾角的計算,屬于基礎題.6.D【解析】
將函數的零點個數問題轉化為函數與直線的交點的個數問題,畫出函數的圖象,易知直線過定點,故與在時的圖象必有兩個交點,故只需與在時的圖象有兩個交點,再與切線問題相結合,即可求解.【詳解】由圖知與有個公共點即可,即,當設切點,則,.故選:D.【點睛】本題考查了函數的零點個數的問題,曲線的切線問題,注意運用轉化思想和數形結合思想,屬于較難的壓軸題.7.A【解析】
畫出不等式組所表示的平面區域,結合圖形確定目標函數的最優解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區域,如圖所示,由目標函數,化為直線,當直線過點A時,此時直線在y軸上的截距最大,目標函數取得最大值,又由,解得,所以目標函數的最大值為,故選A.【點睛】本題主要考查簡單線性規劃求解目標函數的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數的最優解是解答的關鍵,著重考查了數形結合思想,及推理與計算能力,屬于基礎題.8.B【解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:
直三棱柱的體積為,消去的三棱錐的體積為,
∴幾何體的體積,故選B.點睛:本題考查了由三視圖求幾何體的體積,根據三視圖判斷幾何體的形狀及相關幾何量的數據是解答此類問題的關鍵;幾何體是直三棱柱消去一個三棱錐,結合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.9.C【解析】
先將甲、乙兩人看作一個整體,當作一個元素,再將這四個元素分成3個部分,每一個部分至少一個,再將這3部分分配到3個不同的路口,根據分步計數原理可得選項.【詳解】把甲、乙兩名交警看作一個整體,個人變成了4個元素,再把這4個元素分成3部分,每部分至少有1個人,共有種方法,再把這3部分分到3個不同的路口,有種方法,由分步計數原理,共有種方案。故選:C.【點睛】本題主要考查排列與組合,常常運用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.10.A【解析】
由題知,利用求出,再根據題給定義,化簡求出的解析式,結合正弦函數和正切函數圖象判斷,即可得出答案.【詳解】根據題意,的圖象與直線的相鄰交點間的距離為,所以的周期為,則,所以,由正弦函數和正切函數圖象可知正確.故選:A.【點睛】本題考查三角函數中正切函數的周期和圖象,以及正弦函數的圖象,解題關鍵是對新定義的理解.11.A【解析】
先計算出兩個圖像的交點分別為,再利用定積分算兩個圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點睛】本題考察定積分的應用,屬于基礎題.解題時注意積分區間和被積函數的選取.12.B【解析】
首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進而求出漸近線的方程.【詳解】設左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
將已知由前n項和定義整理為,再由等比數列性質求得公比,最后由數列各項均為正數,舍根得解.【詳解】因為即又等比數列各項均為正數,故故答案為:【點睛】本題考查在等比數列中由前n項和關系求公比,屬于基礎題.14.,【解析】
根據特稱命題的否定為全稱命題得到結果即可.【詳解】解:因為特稱命題的否定是全稱命題,所以,命題,則該命題的否定是:,故答案為:,.【點睛】本題考查全稱命題與特稱命題的否定關系,屬于基礎題.15.【解析】
利用即可建立關于的方程.【詳解】設雙曲線右焦點為,過右焦點且與軸垂直的直線與兩條漸近線分別交于兩點,則,,由已知,,即,所以,離心率.故答案為:【點睛】本題考查求雙曲線的離心率,做此類題的關鍵是建立的方程或不等式,是一道容易題.16.【解析】
由,求出長度關系,利用角平分線以及面積關系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點睛】本題考查共線向量的應用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),;(2).【解析】
(1)由條件得出方程組,可求得的通項,當時,,可得,當時,,得出是以1為首項,2為公比的等比數列,可求得的通項;(2)由(1)可知,,分n為偶數和n為奇數分別求得.【詳解】(1)由條件知,,,當時,,即,當時,,是以1為首項,2為公比的等比數列,;(2)由(1)可知,,當n為偶數時,當n為奇數時,綜上,【點睛】本題考查等差數列和等比數列的通項的求得,以及其前n項和,注意分n為偶數和n為奇數兩種情況分別求得其數列的和,屬于中檔題.18.(1),(2)【解析】
(1)利用互化公式把曲線C化成直角坐標方程,把點P的極坐標化成直角坐標;(2)把直線l的參數方程的標準形式代入曲線C的直角坐標方程,根據韋達定理以及參數t的幾何意義可得.【詳解】(1)由ρ2得ρ2+ρ2sin2θ=2,將ρ2=x2+y2,y=ρsinθ代入上式并整理得曲線C的直角坐標方程為y2=1,設點P的直角坐標為(x,y),因為P的極坐標為(,),所以x=ρcosθcos1,y=ρsinθsin1,所以點P的直角坐標為(1,1).(2)將代入y2=1,并整理得41t2+110t+25=0,因為△=1102﹣4×41×25=8000>0,故可設方程的兩根為t1,t2,則t1,t2為A,B對應的參數,且t1+t2,依題意,點M對應的參數為,所以|PM|=||.【點睛】本題考查了簡單曲線的極坐標方程,屬中檔題.19.(1)見解析(2)(3)【解析】
(1)若函數有局部對稱點,則,即有解,即可求證;(2)由題可得在內有解,即方程在區間上有解,則,設,利用導函數求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設,則可變形為方程在區間內有解,進而求解即可.【詳解】(1)證明:由得,代入得,則得到關于x的方程,由于且,所以,所以函數必有局部對稱點(2)解:由題,因為函數在定義域內有局部對稱點所以在內有解,即方程在區間上有解,所以,設,則,所以令,則,當時,,故函數在區間上單調遞減,當時,,故函數在區間上單調遞增,所以,因為,,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變為在區間內有解,需滿足條件:,即,得【點睛】本題考查函數的局部對稱點的理解,利用導函數研究函數的最值問題,考查轉化思想與運算能力.20.(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)線段上是存在一點,,使直線與平面所成的角正弦值為.【解析】
(Ⅰ)取中點,連結、,推導出四邊形是平行四邊形,從而,由此能證明平面;(Ⅱ)取中點,連結,,推導出平面,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值;(Ⅲ)假設在線段上是存在一點,使直線與平面所成的角正弦值為,設.利用向量法能求出結果.【詳解】(Ⅰ)證明:取中點,連結、,是邊長為2的等邊三角形,,,,點為的中點,,四邊形是平行四邊形,,平面,平面,平面.(Ⅱ)解:取中點,連結,,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點為的中點,平面,,以為原點,為軸,為軸,為軸,建立空間直角坐標系,,1,,,0,,,1,,,0,,,,,,0,,,,,設平面的法向量,,,則,取,得,,,設平面的法向量,,,則,取,得,設二面角的平面角為,則.二面角的余弦值為.(Ⅲ)解:假設在線段上是存在一點,使直線與平面所成的角正弦值為,設.則,,,,,,平面的法向量,,解得,線段上是存在一點,,使直線與平面所成的角正弦值為.【點睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考查滿足正弦值的點是否存在的判斷與求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.21.(Ⅰ)6(Ⅱ)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB31/T 1279-2021實驗裸鼴鼠生長和繁殖期的配合飼料營養成分
- DB31/T 1154-2019手術室X射線影像診斷放射防護及檢測要求
- DB31/T 1089-2018環境空氣有機硫在線監測技術規范
- DB31/ 970-2016建筑用人造石單位產品能源消耗限額
- DB31/ 807.2-2015重點單位保安服務要求第2部分:特殊勤務保安
- DB31/ 329.8-2014重點單位重要部位安全技術防范系統要求第8部分:旅館、商務辦公樓
- 2025餐廳經理勞動合同模板
- 網絡安全政策與規范試題及答案
- 藝術創意園區入駐企業與運營管理協議
- 數字媒體廣告內容原創版權授權合同
- 3第三章申論寫作 寫作課件
- 廣西建設工程質量檢測和建筑材料試驗收費項目及標準指導性意見(新)2023.10.11
- 商戶撤場退鋪驗收單
- 國開電大 可編程控制器應用實訓 形考任務5實訓報告
- PEP英語四年級下冊U5 My clothes Read and write(教學課件)
- DB37-T 2671-2019 教育機構能源消耗定額標準-(高清版)
- 信息系統項目管理師論文8篇
- (完整版)重大危險源清單及辨識表
- 試驗室儀器設備檢定校準證書和測試報告確認表(公司范本)
- 《傳媒翻譯》教學大綱
- 新工科的建設和發展思考ppt培訓課件
評論
0/150
提交評論