廣西壯族自治區玉林市博白縣重點名校2024年中考四模數學試題含解析_第1頁
廣西壯族自治區玉林市博白縣重點名校2024年中考四模數學試題含解析_第2頁
廣西壯族自治區玉林市博白縣重點名校2024年中考四模數學試題含解析_第3頁
廣西壯族自治區玉林市博白縣重點名校2024年中考四模數學試題含解析_第4頁
廣西壯族自治區玉林市博白縣重點名校2024年中考四模數學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西壯族自治區玉林市博白縣重點名校2024年中考四模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.的相反數是()A. B.- C. D.2.若實數a,b滿足|a|>|b|,則與實數a,b對應的點在數軸上的位置可以是()A. B. C. D.3.下列運算正確的是()A.a12÷a4=a3 B.a4?a2=a8 C.(﹣a2)3=a6 D.a?(a3)2=a74.為弘揚傳統文化,某校初二年級舉辦傳統文化進校園朗誦大賽,小明同學根據比賽中九位評委所給的某位參賽選手的分數,制作了一個表格,如果去掉一個最高分和一個最低分,則表中數據一定不發生變化的是()中位數眾數平均數方差9.29.39.10.3A.中位數 B.眾數 C.平均數 D.方差5.如圖,已知直線,點E,F分別在、上,,如果∠B=40°,那么()A.20° B.40° C.60° D.80°6.把邊長相等的正六邊形ABCDEF和正五邊形GHCDL的CD邊重合,按照如圖所示的方式疊放在一起,延長LG交AF于點P,則∠APG=()A.141° B.144° C.147° D.150°7.三角形的兩邊長分別為3和6,第三邊的長是方程x2﹣6x+8=0的一個根,則這個三角形的周長是()A.9 B.11 C.13 D.11或138.實數在數軸上的點的位置如圖所示,則下列不等關系正確的是()A.a+b>0 B.a-b<0 C.<0 D.>9.如圖,數軸上有A,B,C,D四個點,其中絕對值最小的數對應的點是()A.點A B.點B C.點C D.點D10.如圖,在平面直角坐標系中,以A(-1,0),B(2,0),C(0,1)為頂點構造平行四邊形,下列各點中不能作為平行四邊形頂點坐標的是()A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)二、填空題(共7小題,每小題3分,滿分21分)11.關于的一元二次方程有兩個相等的實數根,則________.12.的倒數是_____________.13.因式分解:3x2-6xy+3y2=______.14.化簡:x2-4x+4x15.如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,若∠C=20°,則∠CDA=°.16.64的立方根是_______.17.已知關于x的方程1-xx-2三、解答題(共7小題,滿分69分)18.(10分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:(1)△ABE≌△CDF;四邊形BFDE是平行四邊形.19.(5分)在?ABCD中,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.(1)求證:四邊形DEBF是矩形;(2)若AF平分∠DAB,AE=3,BF=4,求?ABCD的面積.20.(8分)如圖1,在平面直角坐標系中,O為坐標原點,拋物線y=ax2+bx+3交x軸于B、C兩點(點B在左,點C在右),交y軸于點A,且OA=OC,B(﹣1,0).(1)求此拋物線的解析式;(2)如圖2,點D為拋物線的頂點,連接CD,點P是拋物線上一動點,且在C、D兩點之間運動,過點P作PE∥y軸交線段CD于點E,設點P的橫坐標為t,線段PE長為d,寫出d與t的關系式(不要求寫出自變量t的取值范圍);(3)如圖3,在(2)的條件下,連接BD,在BD上有一動點Q,且DQ=CE,連接EQ,當∠BQE+∠DEQ=90°時,求此時點P的坐標.21.(10分)如圖,可以自由轉動的轉盤被它的兩條直徑分成了四個分別標有數字的扇形區域,其中標有數字“1”的扇形圓心角為120°.轉動轉盤,待轉盤自動停止后,指針指向一個扇形的內部,則該扇形內的數字即為轉出的數字,此時,稱為轉動轉盤一次(若指針指向兩個扇形的交線,則不計轉動的次數,重新轉動轉盤,直到指針指向一個扇形的內部為止)(1)轉動轉盤一次,求轉出的數字是-2的概率;(2)轉動轉盤兩次,用樹狀圖或列表法求這兩次分別轉出的數字之積為正數的概率.22.(10分)如圖①,已知拋物線y=ax2+bx+c的圖像經過點A(0,3)、B(1,0),其對稱軸為直線l:x=2,過點A作AC∥x軸交拋物線于點C,∠AOB的平分線交線段AC于點E,點P是拋物線上的一個動點,設其橫坐標為m.(1)求拋物線的解析式;(2)若動點P在直線OE下方的拋物線上,連結PE、PO,當m為何值時,四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F是拋物線的對稱軸l上的一點,在拋物線上是否存在點P使△POF成為以點P為直角頂點的等腰直角三角形?若存在,直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.23.(12分)已知:如圖,A、C、F、D在同一直線上,AF=DC,AB=DE,BC=EF,求證:△ABC≌△DEF.24.(14分)水果店老板用600元購進一批水果,很快售完;老板又用1250元購進第二批水果,所購件數是第一批的2倍,但進價比第一批每件多了5元,問第一批水果每件進價多少元?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據只有符號不同的兩個數互為相反數進行解答即可.【詳解】與只有符號不同,所以的相反數是,故選C.【點睛】本題考查了相反數的定義,熟練掌握相反數的定義是解題的關鍵.2、D【解析】

根據絕對值的意義即可解答.【詳解】由|a|>|b|,得a與原點的距離比b與原點的距離遠,只有選項D符合,故選D.【點睛】本題考查了實數與數軸,熟練運用絕對值的意義是解題關鍵.3、D【解析】

分別根據同底數冪的除法、乘法和冪的乘方的運算法則逐一計算即可得.【詳解】解:A、a12÷a4=a8,此選項錯誤;

B、a4?a2=a6,此選項錯誤;

C、(-a2)3=-a6,此選項錯誤;

D、a?(a3)2=a?a6=a7,此選項正確;

故選D.【點睛】本題主要考查冪的運算,解題的關鍵是掌握同底數冪的除法、乘法和冪的乘方的運算法則.4、A【解析】

根據中位數:將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數可得答案.【詳解】如果去掉一個最高分和一個最低分,則表中數據一定不發生變化的是中位數.故選A.點睛:本題主要考查了中位數,關鍵是掌握中位數定義.5、C【解析】

根據平行線的性質,可得的度數,再根據以及平行線的性質,即可得出的度數.【詳解】∵,,∴,∵,∴,∵,∴,故選C.【點睛】本題主要考查了平行線的性質的運用,解題時注意:兩直線平行,同旁內角互補,且內錯角相等.6、B【解析】

先根據多邊形的內角和公式分別求得正六邊形和正五邊形的每一個內角的度數,再根據多邊形的內角和公式求得∠APG的度數.【詳解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故選B.【點睛】本題考查了多邊形內角與外角,關鍵是熟悉多邊形內角和定理:(n﹣2)?180(n≥3)且n為整數).7、C【解析】試題分析:先求出方程x2-6x+8=0的解,再根據三角形的三邊關系求解即可.解方程x2-6x+8=0得x=2或x=4當x=2時,三邊長為2、3、6,而2+3<6,此時無法構成三角形當x=4時,三邊長為4、3、6,此時可以構成三角形,周長=4+3+6=13故選C.考點:解一元二次方程,三角形的三邊關系點評:解題的關鍵是熟記三角形的三邊關系:任兩邊之和大于第三邊,任兩邊之差小于第三邊.8、C【解析】

根據點在數軸上的位置,可得a,b的關系,根據有理數的運算,可得答案.【詳解】解:由數軸,得b<-1,0<a<1.A、a+b<0,故A錯誤;B、a-b>0,故B錯誤;C、<0,故C符合題意;D、a2<1<b2,故D錯誤;故選C.【點睛】本題考查了實數與數軸,利用點在數軸上的位置得出b<-1,0<a<1是解題關鍵,又利用了有理數的運算.9、B【解析】試題分析:在數軸上,離原點越近則說明這個點所表示的數的絕對值越小,根據數軸可知本題中點B所表示的數的絕對值最小.故選B.10、B【解析】

作出圖形,結合圖形進行分析可得.【詳解】如圖所示:①以AC為對角線,可以畫出?AFCB,F(-3,1);②以AB為對角線,可以畫出?ACBE,E(1,-1);③以BC為對角線,可以畫出?ACDB,D(3,1),故選B.二、填空題(共7小題,每小題3分,滿分21分)11、-1.【解析】

根據根的判別式計算即可.【詳解】解:依題意得:∵關于的一元二次方程有兩個相等的實數根,∴==4-41(-k)=4+4k=0解得,k=-1.故答案為:-1.【點睛】本題考查了一元二次方程根的判別式,當=>0時,方程有兩個不相等的實數根;當==0時,方程有兩個相等的實數根;當=<0時,方程無實數根.12、【解析】先把帶分數化成假分數可得:,然后根據倒數的概念可得:的倒數是,故答案為:.13、3(x﹣y)1【解析】試題分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考點:提公因式法與公式法的綜合運用14、﹣x-2x【解析】

直接利用分式的混合運算法則即可得出.【詳解】原式====-x-2故答案為:-x-2【點睛】此題主要考查了分式的化簡,正確掌握運算法則是解題關鍵.15、1.【解析】

連接OD,根據圓的切線定理和等腰三角形的性質可得出答案.【詳解】連接OD,則∠ODC=90°,∠COD=70°,∵OA=OD,∴∠ODA=∠A=∠COD=35°,∴∠CDA=∠CDO+∠ODA=90°+35°=1°,故答案為1.考點:切線的性質.16、4.【解析】

根據立方根的定義即可求解.【詳解】∵43=64,∴64的立方根是4故答案為4【點睛】此題主要考查立方根的定義,解題的關鍵是熟知立方根的定義.17、k≠1【解析】試題分析:因為1-xx-2+2=k2-x,所以1-x+2(x-2)=-k,所以1-x+2x-4=-k,所以x=3-k,所以x=3-k,因為原方程有解,所以考點:分式方程.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)見解析;【解析】

(1)由四邊形ABCD是平行四邊形,根據平行四邊形的對邊相等,對角相等的性質,即可證得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四邊形ABCD是平行四邊形,根據平行四邊形對邊平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可證得DE=BF.根據對邊平行且相等的四邊形是平行四邊形,即可證得四邊形BFDE是平行四邊形.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四邊形BFDE是平行四邊形.19、(1)證明見解析(2)3【解析】試題分析:(1)根據平行四邊形的性質,可證DF∥EB,然后根據一組對邊平行且相等的四邊形為平行四邊形可證四邊形DEBF是平行四邊形,然后根據有一個角是直角的平行四邊形是矩形可證;(2)根據(1)可知DE=BF,然后根據勾股定理可求AD的長,然后根據角平分線的性質和平行線的性質可求得DF=AD,然后可求CD的長,最后可用平行四邊形的面積公式可求解.試題解析:(1)∵四邊形ABCD是平行四邊形,∴DC∥AB,即DF∥EB.又∵DF=BE,∴四邊形DEBF是平行四邊形.∵DE⊥AB,∴∠EDB=90°.∴四邊形DEBF是矩形.(2)∵四邊形DEBF是矩形,∴DE=BF=4,BD=DF.∵DE⊥AB,∴AD===1.∵DC∥AB,∴∠DFA=∠FAB.∵AF平分∠DAB,∴∠DAF=∠FAB.∴∠DAF=∠DFA.∴DF=AD=1.∴BE=1.∴AB=AE+BE=3+1=2.∴S□ABCD=AB·BF=2×4=3.20、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).【解析】

(1)由拋物線y=ax2+bx+3與y軸交于點A,可求得點A的坐標,又OA=OC,可求得點C的坐標,然后分別代入B,C的坐標求出a,b,即可求得二次函數的解析式;(2)首先延長PE交x軸于點H,現將解析式換為頂點解析式求得D(1,4),設直線CD的解析式為y=kx+b,再將點C(3,0)、D(1,4)代入,得y=﹣2x+6,則E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根據d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,根據題意在(2)的條件下先證明△DQT≌△ECH,再根據全等三角形的性質即可得ME=4﹣2(﹣2t+6),QM=t﹣1+(3﹣t),即可求得答案.【詳解】解:(1)當x=0時,y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵拋物線y=ax2+bx+3經過點B(﹣1,0),C(3,0)∴,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)如圖1,延長PE交x軸于點H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設直線CD的解析式為y=kx+b,將點C(3,0)、D(1,4)代入,得:,解得:,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如圖2,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=,∴P(,).【點睛】本題考查了二次函數的綜合題,解題的關鍵是熟練的掌握二次函數的相關知識點.21、(1);(2).【解析】【分析】(1)根據題意可求得2個“-2”所占的扇形圓心角的度數,再利用概率公式進行計算即可得;(2)由題意可得轉出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情況,再找出符合條件的可能性,根據概率公式進行計算即可得.【詳解】(1)由題意可知:“1”和“3”所占的扇形圓心角為120°,所以2個“-2”所占的扇形圓心角為360°-2×120°=120°,∴轉動轉盤一次,求轉出的數字是-2的概率為=;(2)由(1)可知,該轉盤轉出“1”、“3”、“-2”的概率相同,均為,所有可能性如下表所示:第一次第二次1-231(1,1)(1,-2)(1,3)-2(-2,1)(-2,-2)(-2,3)3(3,1)(3,-2)(3,3)由上表可知:所有可能的結果共9種,其中數字之積為正數的的有5種,其概率為.【點睛】本題考查了列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數與總情況數之比.22、(1)y=x2-4x+3.(2)當m=時,四邊形AOPE面積最大,最大值為.(3)P點的坐標為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對稱性可得點D的坐標,利用交點式可得拋物線的解析式;(2)設P(m,m2-4m+3),根據OE的解析式表示點G的坐標,表示PG的長,根據面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構建全等三角形,證明△OMP≌△PNF,根據OM=PN列方程可得點P的坐標;同理可得其他圖形中點P的坐標.詳解:(1)如圖1,設拋物線與x軸的另一個交點為D,由對稱性得:D(3,0),設拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論