江蘇揚州中學(xué)2025屆高三下學(xué)期第四次教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題_第1頁
江蘇揚州中學(xué)2025屆高三下學(xué)期第四次教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題_第2頁
江蘇揚州中學(xué)2025屆高三下學(xué)期第四次教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題_第3頁
江蘇揚州中學(xué)2025屆高三下學(xué)期第四次教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題_第4頁
江蘇揚州中學(xué)2025屆高三下學(xué)期第四次教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇揚州中學(xué)2025屆高三下學(xué)期第四次教學(xué)質(zhì)量檢測試題數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在上的圖象大致為()A. B. C. D.2.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準(zhǔn)線的拋物線經(jīng)過,設(shè)球的半徑分別為,則()A. B. C. D.3.將函數(shù)f(x)=sin3x-cos3x+1的圖象向左平移個單位長度,得到函數(shù)g(x)的圖象,給出下列關(guān)于g(x)的結(jié)論:①它的圖象關(guān)于直線x=對稱;②它的最小正周期為;③它的圖象關(guān)于點(,1)對稱;④它在[]上單調(diào)遞增.其中所有正確結(jié)論的編號是()A.①② B.②③ C.①②④ D.②③④4.已知x,y滿足不等式,且目標(biāo)函數(shù)z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]5.已知在中,角的對邊分別為,若函數(shù)存在極值,則角的取值范圍是()A. B. C. D.6.已知,,若,則實數(shù)的值是()A.-1 B.7 C.1 D.1或77.如圖,將兩個全等等腰直角三角形拼成一個平行四邊形,將平行四邊形沿對角線折起,使平面平面,則直線與所成角余弦值為()A. B. C. D.8.已知集合,,則集合的真子集的個數(shù)是()A.8 B.7 C.4 D.39.如圖,在棱長為4的正方體中,E,F(xiàn),G分別為棱AB,BC,的中點,M為棱AD的中點,設(shè)P,Q為底面ABCD內(nèi)的兩個動點,滿足平面EFG,,則的最小值為()A. B. C. D.10.設(shè),且,則()A. B. C. D.11.已知集合,集合,若,則()A. B. C. D.12.函數(shù)(,,)的部分圖象如圖所示,則的值分別為()A.2,0 B.2, C.2, D.2,二、填空題:本題共4小題,每小題5分,共20分。13.實數(shù),滿足約束條件,則的最大值為__________.14.設(shè)直線過雙曲線的一個焦點,且與的一條對稱軸垂直,與交于兩點,為的實軸長的2倍,則雙曲線的離心率為.15.已知函數(shù)f(x)=axlnx﹣bx(a,b∈R)在點(e,f(e))處的切線方程為y=3x﹣e,則a+b=_____.16.能說明“若對于任意的都成立,則在上是減函數(shù)”為假命題的一個函數(shù)是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱臺中,側(cè)面與側(cè)面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.18.(12分)已知函數(shù)(1)當(dāng)時,求不等式的解集;(2)的圖象與兩坐標(biāo)軸的交點分別為,若三角形的面積大于,求參數(shù)的取值范圍.19.(12分)已知四棱錐中,底面為等腰梯形,,,,丄底面.(1)證明:平面平面;(2)過的平面交于點,若平面把四棱錐分成體積相等的兩部分,求二面角的余弦值.20.(12分)如圖,設(shè)點為橢圓的右焦點,圓過且斜率為的直線交圓于兩點,交橢圓于點兩點,已知當(dāng)時,(1)求橢圓的方程.(2)當(dāng)時,求的面積.21.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程以及曲線的直角坐標(biāo)方程;(2)若直線與曲線、曲線在第一象限交于兩點,且,點的坐標(biāo)為,求的面積.22.(10分)選修4-5:不等式選講已知函數(shù)(Ⅰ)解不等式;(Ⅱ)對及,不等式恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)函數(shù)的奇偶性及函數(shù)在時的符號,即可求解.【詳解】由可知函數(shù)為奇函數(shù).所以函數(shù)圖象關(guān)于原點對稱,排除選項A,B;當(dāng)時,,,排除選項D,故選:C.【點睛】本題主要考查了函數(shù)的奇偶性的判定及奇偶函數(shù)圖像的對稱性,屬于中檔題.2、D【解析】

由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內(nèi)切于正方體,設(shè),兩球球心和公切點都在體對角線上,通過幾何關(guān)系可轉(zhuǎn)化出,進而求解【詳解】根據(jù)拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內(nèi)切于正方體,不妨設(shè),兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【點睛】本題考查立體圖與平面圖的轉(zhuǎn)化,拋物線幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化思想,直觀想象與數(shù)學(xué)運算的核心素養(yǎng)3、B【解析】

根據(jù)函數(shù)圖象的平移變換公式求出函數(shù)的解析式,再利用正弦函數(shù)的對稱性、單調(diào)區(qū)間等相關(guān)性質(zhì)求解即可.【詳解】因為f(x)=sin3x-cos3x+1=2sin(3x-)+1,由圖象的平移變換公式知,函數(shù)g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期為,故②正確;令3x+=kπ+,得x=+(k∈Z),所以x=不是對稱軸,故①錯誤;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函數(shù)g(x)的圖象關(guān)于點(,1)對稱,故③正確;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④錯誤;故選:B【點睛】本題考查圖象的平移變換和正弦函數(shù)的對稱性、單調(diào)性和最小正周期等性質(zhì);考查運算求解能力和整體代換思想;熟練掌握正弦函數(shù)的對稱性、單調(diào)性和最小正周期等相關(guān)性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、常考題型4、B【解析】

作出可行域,對t進行分類討論分析目標(biāo)函數(shù)的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當(dāng)t≤2時,可行域即為如圖中的△OAM,此時目標(biāo)函數(shù)z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時可知目標(biāo)函數(shù)Z=9x+6y在的交點()處取得最大值,此時Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點睛】此題考查線性規(guī)劃,根據(jù)可行域結(jié)合目標(biāo)函數(shù)的最大值的取值范圍求參數(shù)的取值范圍,涉及分類討論思想,關(guān)鍵在于熟練掌握截距型目標(biāo)函數(shù)的最大值最優(yōu)解的處理辦法.5、C【解析】

求出導(dǎo)函數(shù),由有不等的兩實根,即可得不等關(guān)系,然后由余弦定理可及余弦函數(shù)性質(zhì)可得結(jié)論.【詳解】,.若存在極值,則,又.又.故選:C.【點睛】本題考查導(dǎo)數(shù)與極值,考查余弦定理.掌握極值存在的條件是解題關(guān)鍵.6、C【解析】

根據(jù)平面向量數(shù)量積的坐標(biāo)運算,化簡即可求得的值.【詳解】由平面向量數(shù)量積的坐標(biāo)運算,代入化簡可得.∴解得.故選:C.【點睛】本題考查了平面向量數(shù)量積的坐標(biāo)運算,屬于基礎(chǔ)題.7、C【解析】

利用建系,假設(shè)長度,表示向量與,利用向量的夾角公式,可得結(jié)果.【詳解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作軸//,建立空間直角坐標(biāo)系如圖設(shè),所以則所以所以故選:C【點睛】本題考查異面直線所成成角的余弦值,一般采用這兩種方法:(1)將兩條異面直線作輔助線放到同一個平面,然后利用解三角形知識求解;(2)建系,利用空間向量,屬基礎(chǔ)題.8、D【解析】

轉(zhuǎn)化條件得,利用元素個數(shù)為n的集合真子集個數(shù)為個即可得解.【詳解】由題意得,,集合的真子集的個數(shù)為個.故選:D.【點睛】本題考查了集合的化簡和運算,考查了集合真子集個數(shù)問題,屬于基礎(chǔ)題.9、C【解析】

把截面畫完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對稱性可得的最小值.【詳解】如圖,分別取的中點,連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方體中平面,從而有,∴,∴在以為圓心1為半徑的四分之一圓(圓在正方形內(nèi)的部分)上,顯然關(guān)于直線的對稱點為,,當(dāng)且僅當(dāng)共線時取等號,∴所求最小值為.故選:C.【點睛】本題考查空間距離的最小值問題,解題時作出正方體的完整截面求出點軌跡是第一個難點,第二個難點是求出點軌跡,第三個難點是利用對稱性及圓的性質(zhì)求得最小值.10、C【解析】

將等式變形后,利用二次根式的性質(zhì)判斷出,即可求出的范圍.【詳解】即故選:C【點睛】此題考查解三角函數(shù)方程,恒等變化后根據(jù)的關(guān)系即可求解,屬于簡單題目.11、A【解析】

根據(jù)或,驗證交集后求得的值.【詳解】因為,所以或.當(dāng)時,,不符合題意,當(dāng)時,.故選A.【點睛】本小題主要考查集合的交集概念及運算,屬于基礎(chǔ)題.12、D【解析】

由題意結(jié)合函數(shù)的圖象,求出周期,根據(jù)周期公式求出,求出,根據(jù)函數(shù)的圖象過點,求出,即可求得答案【詳解】由函數(shù)圖象可知:,函數(shù)的圖象過點,,則故選【點睛】本題主要考查的是的圖像的運用,在解答此類題目時一定要挖掘圖像中的條件,計算三角函數(shù)的周期、最值,代入已知點坐標(biāo)求出結(jié)果二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】

畫出可行域,根據(jù)目標(biāo)函數(shù)截距可求.【詳解】解:作出可行域如下:由得,平移直線,當(dāng)經(jīng)過點時,截距最小,最大解得的最大值為10故答案為:10【點睛】考查可行域的畫法及目標(biāo)函數(shù)最大值的求法,基礎(chǔ)題.14、【解析】

不妨設(shè)雙曲線,焦點,令,由的長為實軸的二倍能夠推導(dǎo)出的離心率.【詳解】不妨設(shè)雙曲線,焦點,對稱軸,由題設(shè)知,因為的長為實軸的二倍,,,,故答案為.【點睛】本題主要考查利用雙曲線的簡單性質(zhì)求雙曲線的離心率,屬于中檔題.求解與雙曲線性質(zhì)有關(guān)的問題時要結(jié)合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當(dāng)涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率問題應(yīng)先將用有關(guān)的一些量表示出來,再利用其中的一些關(guān)系構(gòu)造出關(guān)于的等式,從而求出的值.15、0【解析】

由題意,列方程組可求,即求.【詳解】∵在點處的切線方程為,,代入得①.又②.聯(lián)立①②解得:..故答案為:0.【點睛】本題考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.16、答案不唯一,如【解析】

根據(jù)對基本函數(shù)的理解可得到滿足條件的函數(shù).【詳解】由題意,不妨設(shè),則在都成立,但是在是單調(diào)遞增的,在是單調(diào)遞減的,說明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.【點睛】本題考查對基本初等函數(shù)的圖像和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個在上不是單調(diào)遞減的函數(shù),再檢驗是否滿足命題中的條件,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接,由比例可得∥,進而得線面平行;(Ⅱ)過點作的垂線,建立空間直角坐標(biāo)系,不妨設(shè),則求得平面的法向量為,設(shè)平面的法向量為,由求二面角余弦即可.試題解析:(Ⅰ)證明:連接,梯形,,易知:;又,則∥;平面,平面,可得:∥平面;(Ⅱ)側(cè)面是梯形,,,,則為二面角的平面角,;均為正三角形,在平面內(nèi),過點作的垂線,如圖建立空間直角坐標(biāo)系,不妨設(shè),則,故點,;設(shè)平面的法向量為,則有:;設(shè)平面的法向量為,則有:;,故平面與平面所成的銳二面角的余弦值為.18、(1)(2)【解析】

(1)當(dāng)時,不等式可化為:,再利用絕對值的意義,分,,討論求解.(2)根據(jù)可得,得到函數(shù)的圖象與兩坐標(biāo)軸的交點坐標(biāo)分別為,再利用三角形面積公式由求解.【詳解】(1)當(dāng)時,不等式可化為:①當(dāng)時,不等式化為,解得:②當(dāng)時,不等式化為,解得:,③當(dāng)時,不等式化為解集為,綜上,不等式的解集為.(2)由題得,所以函數(shù)的圖象與兩坐標(biāo)軸的交點坐標(biāo)分別為,的面積為,由,得(舍),或,所以,參數(shù)的取值范圍是.【點睛】本題主要考查絕對值不等式的解法和絕對值函數(shù)的應(yīng)用,還考查分類討論的思想和運算求解的能力,屬于中檔題.19、(1)見證明;(2)【解析】

(1)先證明等腰梯形中,然后證明,即可得到丄平面,從而可證明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如圖的空間坐標(biāo)系,求出平面的法向量為,平面的法向量為,由可得到答案.【詳解】(1)證明:在等腰梯形,,易得在中,,則有,故,又平面,平面,,即平面,故平面丄平面.(2)在梯形中,設(shè),,,,而,即,.以點為坐標(biāo)原點,所在直線為軸,所在直線為軸,所在直線為軸,建立如圖的空間坐標(biāo)系,則,,設(shè)平面的法向量為,由得,取,得,,同理可求得平面的法向量為,設(shè)二面角的平面角為,則,所以二面角的余弦值為.【點睛】本題考查了兩平面垂直的判定,考查了利用空間向量的方法求二面角,考查了棱錐的體積的計算,考查了空間想象能力及計算能力,屬于中檔題.20、(1)(2)【解析】

(1)先求出圓心到直線的距離為,再根據(jù)得到,解之即得a的值,再根據(jù)c=1求出b的值得到橢圓的方程.(2)先求出,,再求得的面積.【詳解】(1)因為直線過點,且斜率.所以直線的方程為,即,所以圓心到直線的距離為,又因為,圓的半徑為,所以,即,解之得,或(舍去).所以,所以所示橢圓的方程為.(2)由(1)得,橢圓的右準(zhǔn)線方程為,離心率,則點到右準(zhǔn)線的距離為,所以,即,把代入橢

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論