




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省衡水市重點名校2025年高三高考仿真模擬沖刺考試(三)數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B.C. D.2.如圖,正方體的棱長為1,動點在線段上,、分別是、的中點,則下列結論中錯誤的是()A., B.存在點,使得平面平面C.平面 D.三棱錐的體積為定值3.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.4.定義,已知函數,,則函數的最小值為()A. B. C. D.5.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”,原文如下:今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二.問物幾何?現有這樣一個相關的問題:將1到2020這2020個自然數中被5除余3且被7除余2的數按照從小到大的順序排成一列,構成一個數列,則該數列各項之和為()A.56383 B.57171 C.59189 D.612426.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.7.函數的部分圖象如圖所示,已知,函數的圖象可由圖象向右平移個單位長度而得到,則函數的解析式為()A. B.C. D.8.執行如圖所示的程序框圖,若輸出的結果為11,則圖中的判斷條件可以為()A. B. C. D.9.已知點是拋物線的對稱軸與準線的交點,點為拋物線的焦點,點在拋物線上且滿足,若取得最大值時,點恰好在以為焦點的橢圓上,則橢圓的離心率為()A. B. C. D.10.設復數滿足,在復平面內對應的點的坐標為則()A. B.C. D.11.設、分別是定義在上的奇函數和偶函數,且,則()A. B.0 C.1 D.312.下列函數中,既是奇函數,又是上的單調函數的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校高三年級共有名學生參加了數學測驗(滿分分),已知這名學生的數學成績均不低于分,將這名學生的數學成績分組如下:,,,,,,得到的頻率分布直方圖如圖所示,則下列說法中正確的是________(填序號).①;②這名學生中數學成績在分以下的人數為;③這名學生數學成績的中位數約為;④這名學生數學成績的平均數為.14.已知,,分別為內角,,的對邊,,,,則的面積為__________.15.在等比數列中,,則________.16.曲線在點處的切線方程為__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設直線與拋物線交于兩點,與橢圓交于兩點,設直線(為坐標原點)的斜率分別為,若.(1)證明:直線過定點,并求出該定點的坐標;(2)是否存在常數,滿足?并說明理由.18.(12分)已知的內角的對邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長是否有最大值?如果有,求出這個最大值,如果沒有,請說明理由.19.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面積的最大值.20.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點.(1)求證:平面平面;(2)點在線段上,且,求平面與平面所成的銳二面角的余弦值.21.(12分)已知矩陣的一個特征值為4,求矩陣A的逆矩陣.22.(10分)已知函數.(1)若對任意x0,f(x)0恒成立,求實數a的取值范圍;(2)若函數f(x)有兩個不同的零點x1,x2(x1x2),證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題意首先確定幾何體的空間結構特征,然后結合空間結構特征即可求得其表面積.【詳解】由三視圖可知,該幾何體為邊長為正方體挖去一個以為球心以為半徑球體的,如圖,故其表面積為,故選:B.【點睛】(1)以三視圖為載體考查幾何體的表面積,關鍵是能夠對給出的三視圖進行恰當的分析,從三視圖中發現幾何體中各元素間的位置關系及數量關系.(2)多面體的表面積是各個面的面積之和;組合體的表面積應注意重合部分的處理.(3)圓柱、圓錐、圓臺的側面是曲面,計算側面積時需要將這個曲面展為平面圖形計算,而表面積是側面積與底面圓的面積之和.2、B【解析】
根據平行的傳遞性判斷A;根據面面平行的定義判斷B;根據線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因為分別是中點,所以,故A正確;在B中,由于直線與平面有交點,所以不存在點,使得平面平面,故B錯誤;在C中,由平面幾何得,根據線面垂直的性質得出,結合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【點睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.3、A【解析】
將正四面體補成正方體,通過正方體的對角線與球的半徑關系,求解即可.【詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設球的半徑為,則,解得,所以,故選:A.【點睛】本題主要考查多面體外接球問題,解決本題的關鍵在于,巧妙構造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉化,屬于中檔題.4、A【解析】
根據分段函數的定義得,,則,再根據基本不等式構造出相應的所需的形式,可求得函數的最小值.【詳解】依題意得,,則,(當且僅當,即時“”成立.此時,,,的最小值為,故選:A.【點睛】本題考查求分段函數的最值,關鍵在于根據分段函數的定義得出,再由基本不等式求得最值,屬于中檔題.5、C【解析】
根據“被5除余3且被7除余2的正整數”,可得這些數構成等差數列,然后根據等差數列的前項和公式,可得結果.【詳解】被5除余3且被7除余2的正整數構成首項為23,公差為的等差數列,記數列則令,解得.故該數列各項之和為.故選:C.【點睛】本題考查等差數列的應用,屬基礎題。6、B【解析】
先判斷命題的真假,進而根據復合命題真假的真值表,即可得答案.【詳解】,,因為,,所以,所以,即命題p為真命題;畫出函數和圖象,知命題q為假命題,所以為真.故選:B.【點睛】本題考查真假命題的概念,以及真值表的應用,解題的關鍵是判斷出命題的真假,難度較易.7、A【解析】
由圖根據三角函數圖像的對稱性可得,利用周期公式可得,再根據圖像過,即可求出,再利用三角函數的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因為函數的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數的解析式、三角函數圖像的平移伸縮變換,需掌握三角形函數的平移伸縮變換原則,屬于基礎題.8、B【解析】
根據程序框圖知當時,循環終止,此時,即可得答案.【詳解】,.運行第一次,,不成立,運行第二次,,不成立,運行第三次,,不成立,運行第四次,,不成立,運行第五次,,成立,輸出i的值為11,結束.故選:B.【點睛】本題考查補充程序框圖判斷框的條件,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意模擬程序一步一步執行的求解策略.9、B【解析】
設,利用兩點間的距離公式求出的表達式,結合基本不等式的性質求出的最大值時的點坐標,結合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設,因為是拋物線的對稱軸與準線的交點,點為拋物線的焦點,所以,則,當時,,當時,,當且僅當時取等號,此時,,點在以為焦點的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.【點睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解.10、B【解析】
根據共軛復數定義及復數模的求法,代入化簡即可求解.【詳解】在復平面內對應的點的坐標為,則,,∵,代入可得,解得.故選:B.【點睛】本題考查復數對應點坐標的幾何意義,復數模的求法及共軛復數的概念,屬于基礎題.11、C【解析】
先根據奇偶性,求出的解析式,令,即可求出。【詳解】因為、分別是定義在上的奇函數和偶函數,,用替換,得,化簡得,即令,所以,故選C。【點睛】本題主要考查函數性質奇偶性的應用。12、C【解析】
對選項逐個驗證即得答案.【詳解】對于,,是偶函數,故選項錯誤;對于,,定義域為,在上不是單調函數,故選項錯誤;對于,當時,;當時,;又時,.綜上,對,都有,是奇函數.又時,是開口向上的拋物線,對稱軸,在上單調遞增,是奇函數,在上是單調遞增函數,故選項正確;對于,在上單調遞增,在上單調遞增,但,在上不是單調函數,故選項錯誤.故選:.【點睛】本題考查函數的基本性質,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、②③【解析】
由頻率分布直方圖可知,解得,故①不正確;這名學生中數學成績在分以下的人數為,故②正確;設這名學生數學成績的中位數為,則,解得,故③正確;④這名學生數學成績的平均數為,故④不正確.綜上,說法正確的序號是②③.14、【解析】
根據題意,利用余弦定理求得,再運用三角形的面積公式即可求得結果.【詳解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面積.故答案為:.【點睛】本題考查余弦定理的應用和三角形的面積公式,考查計算能力.15、1【解析】
設等比數列的公比為,再根據題意用基本量法求解公比,進而利用等比數列項之間的關系得即可.【詳解】設等比數列的公比為.由,得,解得.又由,得.則.故答案為:1【點睛】本題主要考查了等比數列基本量的求解方法,屬于基礎題.16、【解析】
對函數求導后,代入切點的橫坐標得到切線斜率,然后根據直線方程的點斜式,即可寫出切線方程.【詳解】因為,所以,從而切線的斜率,所以切線方程為,即.故答案為:【點睛】本題主要考查過曲線上一點的切線方程的求法,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(0,2);(2)存在,理由見解析【解析】
(1)設直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過定點(2)由斜率公式分別求出,,聯立直線與拋物線,橢圓,再由根與系數的關系得,,,代入,,化簡即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過原點,故設由可得,.,,故所以直線l的方程為故直線l恒過定點.(2)由(1)知設由可得,,即存在常數滿足題意.【點睛】本題主要考查了直線與拋物線、橢圓的位置關系,直線過定點問題,考查學生分析解決問題的能力,屬于中檔題.18、(Ⅰ);(Ⅱ)有最大值,最大值為3.【解析】
(Ⅰ)利用正弦定理將角化邊,再由余弦定理計算可得;(Ⅱ)由正弦定理可得,則,再根據正弦函數的性質計算可得;【詳解】(Ⅰ)由得再由正弦定理得因此,又因為,所以.(Ⅱ)當時,的周長有最大值,且最大值為3,理由如下:由正弦定理得,所以,所以.因為,所以,所以當即時,取到最大值2,所以的周長有最大值,最大值為3.【點睛】本題考查正弦定理、余弦定理解三角形,以及三角函數的性質的應用,屬于中檔題.19、(1);(2)【解析】
(1)根據正弦定理化簡得到,故,得到答案.(2)計算,再利用面積公式計算得到答案.【詳解】(1),則,即,故,,故.(2),故,故.當時等號成立.,故,,故△ABC面積的最大值為.【點睛】本題考查了正弦定理,面積公式,均值不等式,意在考查學生的綜合應用能力.20、(1)見解析(2)【解析】
(1)根據等邊三角形的性質證得,根據面面垂直的性質定理,證得底面,由此證得,結合證得平面,由此證得:平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成的銳二面角的余弦值.【詳解】(1)證明:∵為等邊三角形,為的中點,∴∵平面底面,平面底面,∴底面平面,∴又由題意可知為正方形,又,∴平面平面,∴平面平面(2)如圖建立空間直角坐標系,則,,,由已知,得,設平面的法向量為,則令,則,∴由(1)知平面的法向量可取為∴∴平面與平面所成的銳二面角的余弦值為.【點睛】本小題主要考查面面垂直的判定定理和性質定理,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、.【解析】
根據特征多項式可得,可得,進而可得矩陣A的逆矩陣.【詳解】因為矩陣的特征多項式,所以,所以.因為,且,所以.【點睛】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CAOE 26-2021海洋生態本底調查與評價規范
- 西門子筆試題java面試題及答案
- 白柵欄考試題及答案
- sshm面試題及答案
- 護理競賽考試題庫及答案
- 地球文明考試題及答案
- 公考面試題型套路及答案
- 人生重在反思班會課件
- 食管賁門黏膜撕裂綜合征的臨床護理
- T/CADBM 62-2022多元鎂輕質無機板
- FZ/T 93029-2016塑料粗紗筒管
- 2022年12月山東省普通高中學業水平合格性考試語文仿真模擬試卷C(答題卡)
- 塑膠原料來料檢驗指導書
- 人教版音樂三年級下冊知識總結
- 共點力平衡的應用-完整版PPT
- 建筑物的防雷及安全用電電子教案
- 中國近現代史社會實踐報告-2000字
- 系桿拱橋工程測量施工方案
- ISA-300+使用-300技術使用說明書
- 高層建筑“一棟一冊”消防安全檔案
- 柳洲學校學生儀容儀表日常檢查記錄表
評論
0/150
提交評論