




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆韶關市高三下學期3月質量檢測試題數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.框圖與程序是解決數學問題的重要手段,實際生活中的一些問題在抽象為數學模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數據的方差,設計了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應填入()A., B. C., D.,2.定義,已知函數,,則函數的最小值為()A. B. C. D.3.拋物線的準線與軸的交點為點,過點作直線與拋物線交于、兩點,使得是的中點,則直線的斜率為()A. B. C.1 D.4.函數的圖象大致為()A. B.C. D.5.陀螺是中國民間較早的娛樂工具之一,但陀螺這個名詞,直到明朝劉侗、于奕正合撰的《帝京景物略》一書中才正式出現.如圖所示的網格紙中小正方形的邊長均為1,粗線畫出的是一個陀螺模型的三視圖,則該陀螺模型的表面積為()A. B.C. D.6.已知函數(,,),將函數的圖象向左平移個單位長度,得到函數的部分圖象如圖所示,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知數列為等差數列,為其前項和,,則()A.7 B.14 C.28 D.848.波羅尼斯(古希臘數學家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.9.已知中,角、所對的邊分別是,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分必要條件10.設,則A. B. C. D.11.已知的內角的對邊分別是且,若為最大邊,則的取值范圍是()A. B. C. D.12.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知,記,則的展開式中各項系數和為__________.14.若將函數的圖象沿軸向右平移個單位后所得的圖象與的圖象關于軸對稱,則的最小值為________________.15.我國古代數學著作《九章算術》中記載“今有人共買物,人出八,盈三;人出七,不足四.問人數、物價各幾何?”設人數、物價分別為、,滿足,則_____,_____.16.已知是偶函數,則的最小值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數()的最小值為.(1)求的值;(2)若,,為正實數,且,證明:.18.(12分)在中,角A,B,C的對邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長為8,求b.19.(12分)在國家“大眾創業,萬眾創新”戰略下,某企業決定加大對某種產品的研發投入.為了對新研發的產品進行合理定價,將該產品按事先擬定的價格試銷,得到一組檢測數據如表所示:試銷價格(元)產品銷量(件)已知變量且有線性負相關關系,現有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學的計算結果是正確的.(1)試判斷誰的計算結果正確?(2)若由線性回歸方程得到的估計數據與檢測數據的誤差不超過,則稱該檢測數據是“理想數據”,現從檢測數據中隨機抽取個,求“理想數據”的個數的分布列和數學期望.20.(12分)在直角坐標系中,曲線的參數方程為(為參數,以坐標原點為極點,軸的正半軸為極軸,取相同長度單位建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的普通方程;(2)設射線與曲線交于不同于極點的點,與曲線交于不同于極點的點,求線段的長.21.(12分)為迎接2022年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結束后對學生進行了考核.記表示學生的考核成績,并規定為考核優秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如下莖葉圖:(Ⅰ)從參加培訓的學生中隨機選取1人,請根據圖中數據,估計這名學生考核優秀的概率;(Ⅱ)從圖中考核成績滿足的學生中任取2人,求至少有一人考核優秀的概率;(Ⅲ)記表示學生的考核成績在區間的概率,根據以往培訓數據,規定當時培訓有效.請根據圖中數據,判斷此次中學生冰雪培訓活動是否有效,并說明理由.22.(10分)已知為坐標原點,單位圓與角終邊的交點為,過作平行于軸的直線,設與終邊所在直線的交點為,.(1)求函數的最小正周期;(2)求函數在區間上的值域.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
依題意問題是,然后按直到型驗證即可.【詳解】根據題意為了計算7個數的方差,即輸出的,觀察程序框圖可知,應填入,,故選:A.【點睛】本題考查算法與程序框圖,考查推理論證能力以及轉化與化歸思想,屬于基礎題.2、A【解析】
根據分段函數的定義得,,則,再根據基本不等式構造出相應的所需的形式,可求得函數的最小值.【詳解】依題意得,,則,(當且僅當,即時“”成立.此時,,,的最小值為,故選:A.【點睛】本題考查求分段函數的最值,關鍵在于根據分段函數的定義得出,再由基本不等式求得最值,屬于中檔題.3、B【解析】
設點、,設直線的方程為,由題意得出,將直線的方程與拋物線的方程聯立,列出韋達定理,結合可求得的值,由此可得出直線的斜率.【詳解】由題意可知點,設點、,設直線的方程為,由于點是的中點,則,將直線的方程與拋物線的方程聯立得,整理得,由韋達定理得,得,,解得,因此,直線的斜率為.故選:B.【點睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問題,涉及韋達定理設而不求法的應用,考查運算求解能力,屬于中等題.4、A【解析】
用偶函數的圖象關于軸對稱排除,用排除,用排除.故只能選.【詳解】因為,所以函數為偶函數,圖象關于軸對稱,故可以排除;因為,故排除,因為由圖象知,排除.故選:A【點睛】本題考查了根據函數的性質,辨析函數的圖像,排除法,屬于中檔題.5、C【解析】
根據三視圖可知,該幾何體是由兩個圓錐和一個圓柱構成,由此計算出陀螺的表面積.【詳解】最上面圓錐的母線長為,底面周長為,側面積為,下面圓錐的母線長為,底面周長為,側面積為,沒被擋住的部分面積為,中間圓柱的側面積為.故表面積為,故選C.【點睛】本小題主要考查中國古代數學文化,考查三視圖還原為原圖,考查幾何體表面積的計算,屬于基礎題.6、B【解析】
先根據圖象求出函數的解析式,再由平移知識得到的解析式,然后分別找出和的等價條件,即可根據充分條件,必要條件的定義求出.【詳解】設,根據圖象可知,,再由,取,∴.將函數的圖象向右平移個單位長度,得到函數的圖象,∴.,,令,則,顯然,∴是的必要不充分條件.故選:B.【點睛】本題主要考查利用圖象求正(余)弦型函數的解析式,三角函數的圖形變換,二倍角公式的應用,充分條件,必要條件的定義的應用,意在考查學生的數學運算能力和邏輯推理能力,屬于中檔題.7、D【解析】
利用等差數列的通項公式,可求解得到,利用求和公式和等差中項的性質,即得解【詳解】,解得..故選:D【點睛】本題考查了等差數列的通項公式、求和公式和等差中項,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.8、D【解析】
求得定點M的軌跡方程可得,解得a,b即可.【詳解】設A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點睛】本題考查了橢圓離心率,動點軌跡,屬于中檔題.9、D【解析】
由大邊對大角定理結合充分條件和必要條件的定義判斷即可.【詳解】中,角、所對的邊分別是、,由大邊對大角定理知“”“”,“”“”.因此,“”是“”的充分必要條件.故選:D.【點睛】本題考查充分條件、必要條件的判斷,考查三角形的性質等基礎知識,考查邏輯推理能力,是基礎題.10、C【解析】分析:利用復數的除法運算法則:分子、分母同乘以分母的共軛復數,化簡復數,然后求解復數的模.詳解:,則,故選c.點睛:復數是高考中的必考知識,主要考查復數的概念及復數的運算.要注意對實部、虛部的理解,掌握純虛數、共軛復數這些重要概念,復數的運算主要考查除法運算,通過分母實數化轉化為復數的乘法,運算時特別要注意多項式相乘后的化簡,防止簡單問題出錯,造成不必要的失分.11、C【解析】
由,化簡得到的值,根據余弦定理和基本不等式,即可求解.【詳解】由,可得,可得,通分得,整理得,所以,因為為三角形的最大角,所以,又由余弦定理,當且僅當時,等號成立,所以,即,又由,所以的取值范圍是.故選:C.【點睛】本題主要考查了代數式的化簡,余弦定理,以及基本不等式的綜合應用,試題難度較大,屬于中檔試題,著重考查了推理與運算能力.12、B【解析】
先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據此可知“”是“”的必要不充分條件.故選:B【點睛】本題考查了必要不充分條件的判定,考查了學生數學運算,邏輯推理能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據定積分的計算,得到,令,求得,即可得到答案.【詳解】根據定積分的計算,可得,令,則,即的展開式中各項系數和為.【點睛】本題主要考查了定積分的應用,以及二項式定理的應用,其中解答中根據定積分的計算和二項式定理求得的表示是解答本題的關鍵,著重考查了運算與求解能力,屬于基礎題.14、【解析】
由題意利用函數的圖象變換規律,三角函數的圖像的對稱性,求得的最小值.【詳解】解:將函數的圖象沿軸向右平移個單位長度,可得的圖象.根據圖象與的圖象關于軸對稱,可得,,,即時,的最小值為.故答案為:.【點睛】本題主要考查函數的圖象變換規律,正弦函數圖像的對稱性,屬于基礎題.15、【解析】
利用已知條件,通過求解方程組即可得到結果.【詳解】設人數、物價分別為、,滿足,解得,.故答案為:;.【點睛】本題考查函數與方程的應用,方程組的求解,考查計算能力,屬于基礎題.16、2【解析】
由偶函數性質可得,解得,再結合基本不等式即可求解【詳解】令得,所以,當且僅當時取等號.故答案為:2【點睛】考查函數的奇偶性、基本不等式,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)分類討論,去絕對值求出函數的解析式,根據一次函數的性質,得出的單調性,得出取最小值,即可求的值;(2)由(1)得出,利用“乘1法”,令,化簡后利用基本不等式求出的最小值,即可證出.【詳解】(1)解:當時,單調遞減;當時,單調遞增.所以當時,取最小值.(2)證明:由(1)可知.要證明:,即證,因為,,為正實數,所以.當且僅當,即,,時取等號,所以.【點睛】本題考查絕對值不等式和基本不等式的應用,還運用“乘1法”和分類討論思想,屬于中檔題.18、(1);(2)【解析】
(1)通過正弦定理和內角和定理化簡,再通過二倍角公式即可求出;(2)通過三角形面積公式和三角形的周長為8,求出b的表達式后即可求出b的值.【詳解】(1)由三角形內角和定理及誘導公式,得,結合正弦定理,得,由及二倍角公式,得,即,故;(2)由題設,得,從而,由余弦定理,得,即,又,所以,解得.【點睛】本題綜合考查了正余弦定理,倍角公式,三角形面積公式,屬于基礎題.19、(1)乙同學正確(2)分布列見解析,【解析】
(1)由已知可得甲不正確,求出樣本中心點代入驗證,即可得出結論;(2)根據(1)中得到的回歸方程,求出估值,得到“理想數據”的個數,確定“理想數據”的個數的可能值,并求出概率,得到分布列,即可求解.【詳解】(1)已知變量具有線性負相關關系,故甲不正確,,代入兩個回歸方程,驗證乙同學正確,故回歸方程為:(2)由(1)得到的回歸方程,計算估計數據如下表:“理想數據”有3個,故“理想數據”的個數的取值為:.,,于是“理想數據”的個數的分布列【點睛】本題考查樣本回歸中心點與線性回歸直線方程關系,以及離散型隨機變量的分布列和期望,意在考查邏輯推理、數學計算能力,屬于中檔題.20、(1);(2)【解析】
曲線的參數方程轉換為直角坐標方程為.再用極直互化公式求解,曲線的極坐標方程用極直互化公式轉換為直角坐標方程.射線與曲線的極坐標方程聯解求出,射線與曲線的極坐標方程聯解求出,再用得解【詳解】解:曲線的參數方程為(為參數,轉換為直角坐標方程為.把,代入得:曲線的極坐標方程為.轉換為直角坐標方程為.設射線與曲線交于不同于極點的點,所以,解得.與曲線交于不同于極點的點,所以,解得,所以【點睛】本題考查參數方程、極坐標方程直角坐標方程相互轉換及極坐標下利用和的幾何意義求線段的長.(1)直角坐標方程化為極坐標方程只需將直角坐標方程中的分別用,代替即可得到相應極坐標
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年酚類項目建議書
- 2025年工商用制冷、空調設備項目合作計劃書
- 2025年木材加工及制品項目發展計劃
- 培訓機構兼職講師合同服務與支持協議
- 工業廢水零排放處理設施運營合同
- 未成年人撫養費年度審計與監管協議
- 智能制造領域數字經濟創業企業有限合伙合作協議
- 2025年高純銦及氧化銦項目合作計劃書
- 網絡文學作品改編成互動劇本獨家開發協議
- 軟件產品功能保證補充合同
- 水工機械設備維護檢修規程
- 醫院財務科培訓課件
- 穿脫手術衣與戴無菌手課件
- 生物樣本庫建設方案
- 2024年春江蘇開放大學文學概論060060第一次過程性考核作業答案
- lng基本知識及液化技術介紹
- 北京市東城區2023-2024學年八年級上學期期末數學測評卷(含答案)
- 火災自動報警系統調試記錄
- 《消化內鏡》課件
- 優質課件:幾代中國人的美好夙愿
- 管理工具二八原則培訓課件
評論
0/150
提交評論