




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省泉州永春華僑中學(xué)2025年高三第二次聯(lián)考考數(shù)學(xué)試題理試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.以下關(guān)于的命題,正確的是A.函數(shù)在區(qū)間上單調(diào)遞增B.直線需是函數(shù)圖象的一條對稱軸C.點是函數(shù)圖象的一個對稱中心D.將函數(shù)圖象向左平移需個單位,可得到的圖象2.已知,是橢圓與雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.63.某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護(hù)士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進(jìn)行義務(wù)巡診,其中每個分隊都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護(hù)士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種4.在函數(shù):①;②;③;④中,最小正周期為的所有函數(shù)為()A.①②③ B.①③④ C.②④ D.①③5.復(fù)數(shù)滿足為虛數(shù)單位),則的虛部為()A. B. C. D.6.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.47.三棱柱中,底面邊長和側(cè)棱長都相等,,則異面直線與所成角的余弦值為()A. B. C. D.8.已知復(fù)數(shù),,則()A. B. C. D.9.設(shè)集合則()A. B. C. D.10.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則11.若集合,則=()A. B. C. D.12.已知數(shù)列an滿足:an=2,n≤5a1A.16 B.17 C.18 D.19二、填空題:本題共4小題,每小題5分,共20分。13.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐為陽馬,側(cè)棱底面,且,,設(shè)該陽馬的外接球半徑為,內(nèi)切球半徑為,則__________.14.若向量與向量垂直,則______.15.已知函數(shù)的定義域為R,導(dǎo)函數(shù)為,若,且,則滿足的x的取值范圍為______.16.某學(xué)習(xí)小組有名男生和名女生.若從中隨機(jī)選出名同學(xué)代表該小組參加知識競賽,則選出的名同學(xué)中恰好名男生名女生的概率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右焦點為,過點且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點的連線相互垂直.(1)求橢圓的方程;(2)若圓上存在兩點,,橢圓上存在兩個點滿足:三點共線,三點共線,且,求四邊形面積的取值范圍.18.(12分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為(),M為該曲線上的任意一點.(1)當(dāng)時,求M點的極坐標(biāo);(2)將射線OM繞原點O逆時針旋轉(zhuǎn)與該曲線相交于點N,求的最大值.19.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點在上,點在上,求的最小值以及此時的直角坐標(biāo).20.(12分)在中,角的對邊分別為,若.(1)求角的大小;(2)若,為外一點,,求四邊形面積的最大值.21.(12分)如圖,在正三棱柱中,,,分別為,的中點.(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.22.(10分)己知,函數(shù).(1)若,解不等式;(2)若函數(shù),且存在使得成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
利用輔助角公式化簡函數(shù)得到,再逐項判斷正誤得到答案.【詳解】A選項,函數(shù)先增后減,錯誤B選項,不是函數(shù)對稱軸,錯誤C選項,,不是對稱中心,錯誤D選項,圖象向左平移需個單位得到,正確故答案選D本題考查了三角函數(shù)的單調(diào)性,對稱軸,對稱中心,平移,意在考查學(xué)生對于三角函數(shù)性質(zhì)的綜合應(yīng)用,其中化簡三角函數(shù)是解題的關(guān)鍵.2.C【解析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡,結(jié)合基本不等式即可求解.【詳解】設(shè)橢圓的長半軸長為,雙曲線的半實軸長為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線的定義可得:,則當(dāng)且僅當(dāng)時,取等號.故選:C.本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.3.B【解析】
根據(jù)條件2名內(nèi)科醫(yī)生,每個村一名,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,根據(jù)排列組合進(jìn)行計算即可.【詳解】2名內(nèi)科醫(yī)生,每個村一名,有2種方法,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,要求外科醫(yī)生和護(hù)士都有,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,若甲村有1外科,2名護(hù)士,則有C3若甲村有2外科,1名護(hù)士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.本題主要考查了分組分配問題,解決這類問題的關(guān)鍵是先分組再分配,屬于常考題型.4.A【解析】逐一考查所給的函數(shù):,該函數(shù)為偶函數(shù),周期;將函數(shù)圖象x軸下方的圖象向上翻折即可得到的圖象,該函數(shù)的周期為;函數(shù)的最小正周期為;函數(shù)的最小正周期為;綜上可得最小正周期為的所有函數(shù)為①②③.本題選擇A選項.點睛:求三角函數(shù)式的最小正周期時,要盡可能地化為只含一個三角函數(shù)的式子,否則很容易出現(xiàn)錯誤.一般地,經(jīng)過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.5.C【解析】
,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,故的虛部為.故選:C.本題考查復(fù)數(shù)的除法運算,考查學(xué)生的基本運算能力,是一道基礎(chǔ)題.6.B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得。∴.選B。7.B【解析】
設(shè),,,根據(jù)向量線性運算法則可表示出和;分別求解出和,,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設(shè)棱長為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項:本題考查異面直線所成角的求解,關(guān)鍵是能夠通過向量的線性運算、數(shù)量積運算將問題轉(zhuǎn)化為向量夾角的求解問題.8.B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復(fù)數(shù)問題是高考數(shù)學(xué)中的常考問題,屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運算,在運算時注意符號的正、負(fù)問題.9.C【解析】
直接求交集得到答案.【詳解】集合,則.故選:.本題考查了交集運算,屬于簡單題.10.D【解析】
利用空間位置關(guān)系的判斷及性質(zhì)定理進(jìn)行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.本題主要考查直線與平面平行、垂直的性質(zhì)與判定等基礎(chǔ)知識;考查空間想象能力、推理論證能力,屬于基礎(chǔ)題.11.C【解析】
求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.本題考查了分式不等式的解法,考查了集合的交集,考查了計算能力,屬于基礎(chǔ)題.12.B【解析】
由題意可得a1=a2=a3=a4=a5=2,累加法求得a62+【詳解】解:an即a1=an?6時,a1a1兩式相除可得1+a則an2=由a6a7…,ak2=可得aa1且a1正整數(shù)k(k?5)時,要使得a1則ak+1則k=17,故選:B.本題考查與遞推數(shù)列相關(guān)的方程的整數(shù)解的求法,注意將題設(shè)中的遞推關(guān)系變形得到新的遞推關(guān)系,從而可簡化與數(shù)列相關(guān)的方程,本題屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
該陽馬補(bǔ)形所得到的長方體的對角線為外接球的直徑,由此能求出,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,從而內(nèi)切球半徑為,由此能求出.【詳解】四棱錐為陽馬,側(cè)棱底面,且,,設(shè)該陽馬的外接球半徑為,該陽馬補(bǔ)形所得到的長方體的對角線為外接球的直徑,,,側(cè)棱底面,且底面為正方形,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,內(nèi)切球半徑為,故.故答案為.本題考查了幾何體外接球和內(nèi)切球的相關(guān)問題,補(bǔ)形法的運用,以及數(shù)學(xué)文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問題,關(guān)鍵是能夠確定球心位置,以及選擇恰當(dāng)?shù)慕嵌茸龀鼋孛?球心位置的確定的方法有很多,主要有兩種:(1)補(bǔ)形法(構(gòu)造法),通過補(bǔ)形為長方體(正方體),球心位置即為體對角線的中點;(2)外心垂線法,先找出幾何體中不共線三點構(gòu)成的三角形的外心,再找出過外心且與不共線三點確定的平面垂直的垂線,則球心一定在垂線上.14.0【解析】
直接根據(jù)向量垂直計算得到答案.【詳解】向量與向量垂直,則,故.故答案為:.本題考查了根據(jù)向量垂直求參數(shù),意在考查學(xué)生的計算能力.15.【解析】
構(gòu)造函數(shù),再根據(jù)條件確定為奇函數(shù)且在上單調(diào)遞減,最后利用單調(diào)性以及奇偶性化簡不等式,解得結(jié)果.【詳解】依題意,,令,則,故函數(shù)為奇函數(shù),故函數(shù)在上單調(diào)遞減,則,即,故,則x的取值范圍為.故答案為:本題考查函數(shù)奇偶性、單調(diào)性以及利用函數(shù)性質(zhì)解不等式,考查綜合分析求解能力,屬中檔題.16.【解析】
從7人中選出2人則總數(shù)有,符合條件數(shù)有,后者除以前者即得結(jié)果【詳解】從7人中隨機(jī)選出2人的總數(shù)有,則記選出的名同學(xué)中恰好名男生名女生的概率為事件,∴故答案為:組合數(shù)與概率的基本運用,熟悉組合數(shù)公式三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)又題意知,,及即可求得,從而得橢圓方程.(2)分三種情況:直線斜率不存在時,的斜率為0時,的斜率存在且不為0時,設(shè)出直線方程,聯(lián)立方程組,用韋達(dá)定理和弦長公式以及四邊形的面積公式計算即可.【詳解】(1)由焦點與短軸兩端點的連線相互垂直及橢圓的對稱性可知,,∵過點且與軸垂直的直線被橢圓截得的線段長為.又,解得.∴橢圓的方程為(2)由(1)可知圓的方程為,(i)當(dāng)直線的斜率不存在時,直線的斜率為0,此時(ii)當(dāng)直線的斜率為零時,.(iii)當(dāng)直線的斜率存在且不等于零時,設(shè)直線的方程為,聯(lián)立,得,設(shè)的橫坐標(biāo)分別為,則.所以,(注:的長度也可以用點到直線的距離和勾股定理計算.)由可得直線的方程為,聯(lián)立橢圓的方程消去,得設(shè)的橫坐標(biāo)為,則..綜上,由(i)(ii)(ⅲ)得的取值范圍是.本題考查橢圓的標(biāo)準(zhǔn)方程與幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系的應(yīng)用問題,解答此類題目,通常利用的關(guān)系,確定橢圓方程是基礎(chǔ);通過聯(lián)立直線方程與橢圓方程建立方程組,應(yīng)用一元二次方程根與系數(shù),得到目標(biāo)函數(shù)解析式,運用函數(shù)知識求解;本題是難題.18.(1)點M的極坐標(biāo)為或(2)【解析】
(1)令,由此求得的值,進(jìn)而求得點的極坐標(biāo).(2)設(shè)出兩點的極坐標(biāo),利用勾股定理求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè)點M在極坐標(biāo)系中的坐標(biāo),由,得,∵∴或,所以點M的極坐標(biāo)為或(2)由題意可設(shè),.由,得,.故時,的最大值為.本小題主要考查極坐標(biāo)的求法,考查極坐標(biāo)下兩點間距離的計算以及距離最值的求法,屬于中檔題.19.(1):,:;(2),此時.【解析】試題分析:(1)的普通方程為,的直角坐標(biāo)方程為;(2)由題意,可設(shè)點的直角坐標(biāo)為到的距離當(dāng)且僅當(dāng)時,取得最小值,最小值為,此時的直角坐標(biāo)為.試題解析:(1)的普通方程為,的直角坐標(biāo)方程為.(2)由題意,可設(shè)點的直角坐標(biāo)為,因為是直線,所以的最小值即為到的距離的最小值,.當(dāng)且僅當(dāng)時,取得最小值,最小值為,此時的直角坐標(biāo)為.考點:坐標(biāo)系與參數(shù)方程.【方法點睛】參數(shù)方程與普通方程的互化:把參數(shù)方程化為普通方程,需要根據(jù)其結(jié)構(gòu)特征,選取適當(dāng)?shù)南麉⒎椒ǎR姷南麉⒎椒ㄓ校捍胂麉⒎ǎ患訙p消參法;平方和(差)消參法;乘法消參法;混合消參法等.把曲線的普通方程化為參數(shù)方程的關(guān)鍵:一是適當(dāng)選取參數(shù);二是確保互化前后方程的等價性.注意方程中的參數(shù)的變化范圍.20.(1)(2)【解析】
(1)根據(jù)正弦定理化簡等式可得,即;(2)根據(jù)題意,利用余弦定理可得,再表示出,表示出四邊形,進(jìn)而可得最值.【詳解】(1),由正弦定理得:在中,,則,即,,即.(2)在中,又,則為等邊三角形,又,-當(dāng)時,四邊形的面積取最大值,最大值為.本題主要考查了正弦定理,余弦定理,三角形面積公式的應(yīng)用,屬于基礎(chǔ)題.21.(1)證明見詳解;(2).【解析】
(1)取中點為,通過證明//,進(jìn)而證明線面平行;(2)取中點為,以為坐標(biāo)原點建立直角坐標(biāo)系,求得兩個平面的法向量,用向量法解得二面角的大小.【詳解】(1)證明:取的中點,連結(jié),,如下圖所示:在中,因為為的中點,,且,又為的中點,,,且,,且,四邊形為平行四邊形,又平面,平面,平面,即證.(2)取中點,連結(jié),,則,平面,以為原點,分別以,,為,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- otc活動策劃方案(3篇)
- 中職食堂飯菜管理方案(3篇)
- 媒介投放規(guī)劃方案(3篇)
- DB23-T2901-2021-草原草本植物標(biāo)本制作技術(shù)規(guī)程-黑龍江省
- 公司市場人員管理制度
- 公司員工信息管理制度
- 城市管線普查方案(3篇)
- 寄遞物流管理管理制度
- 賓館用電安全管理制度
- 農(nóng)村超市收購方案(3篇)
- 遼寧省沈陽市和平區(qū)2023-2024學(xué)年七年級下學(xué)期期末地理試題
- 山東省淄博市臨淄區(qū)2023-2024學(xué)年七年級下學(xué)期期末地理試題
- 大學(xué)《醫(yī)學(xué)統(tǒng)計學(xué)》期末復(fù)習(xí)章節(jié)知識點、考點總結(jié)
- 2024年中考理化生實驗操作考試安全應(yīng)急預(yù)案
- 鼻淵護(hù)理常規(guī)課件
- MOOC 電工電子學(xué)-浙江大學(xué) 中國大學(xué)慕課答案
- MOOC 財務(wù)報表分析-華中科技大學(xué) 中國大學(xué)慕課答案
- 師帶徒培養(yǎng)方案范文
- 初中語文組知識講座
- 辦公用品項目實施計劃
- 電廠班組安全教育課件
評論
0/150
提交評論